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SIGNIFICANCE AND EXPLANATION

This paper concerns the controllability of the Maxwell electromagnetic

equations in a cylindrical spatial region by means of controlling currents
caugsed to flow on the boundary of the region. Here controllability refers to
the ability to transfer from electric and magnetic fields, given at the
initial instant, to corresponding fields prescribed at a later instant.
Studies of this type are significant in relation to wave guides, EM-pulse
devices, radar non-relective (stealth) aircraft, controlled thermonuclear

fusion and many other important applications.
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THE DIRICHLET-NEUMANN BOUNDARY CONTROL PROBLEM ASSOCIATED
o WITH MAXWELL'S EQUATIONS IN A CYLINDRICAL REGION
e
’.. ‘ D. L. Russell
i 1. BACKGROUWD.
In this paper we consider a region 0 ¢ RJ, not necessarily bounded, having piecewise
smooth boundary [ and almost everywhere uniquely defined unit exterior normal vector
Ve 3(!.1.:). {x,y,2) € T. It is assumed that the region £ is occupied by a medium
having constant electrical permitivity ¢ and constant magnetic permeability u. We have
then, in R, the paired electric and magnetic fields
} + *>
E = E(x,y,z,t) ,
ﬁ - ﬁ(x.Y.!.t) .
having finite enexqgy
o) =B [f] ertr? « pifidrav , (1.1)
. im n
o
1
N
where 1 | denctes the usual Euclidean norm in R3. As is well known ((4], (9]), £ and
[ satisfy, in 2, Maxwell's equations
> o
curlﬂ‘oﬁ, (1.2)
»
b4 dH
eurl!--uﬁ . (1.3)
. avi-p, (1.4)
x5
pa
,é' avii=o, (1.5)

- where P = pi{x,y,z,t) 1is the electrical charge density in 8 - which is zero throughout

this paper. (That equation (1.5) might eventually have to be modified to account for

magnetic monopoles will trouble us not at all herel)




Control problems associated with Maxwell's equations have been of interest primarily
% in connection with nuclear fusion applications - in which case p is not identically equal
to zero and the Maxwell equations are coupled with the dynamical equations governing the
plasma evolution. In this connection we cite the work of P. XK. C. Wang [29], (30], [31).
The point of view which we take here is that we cannot hope to treat these more complicated
i problems until we have a firmer grasp on the control theory of Maxwell's system in its own
& right. 1In this direction some work on controllability with control influence distributed
throughout £ has been carried out by G. Chen (2], [3). We are primarily concerned here
with the possibility of influencing the evolution of the fields £ ana fi by means of an
externally determined current 3(x.y,z,t) flowing tangentially in T so that

S(x,y,2,8)e0(x,y,2) = 0 , (1.6)

for (x,y,z) €T where \’O(x.y,z) is defined. We will assume that the normal component of

£ vanishes cutside 8 and that no charge is permitted to accumulate on [. Then we have

the boundary conditions (see e.g. [4], [28]))

A S e gy

ci(x,y.z,t)'g(x,y,:) = 0 (1.7)
uﬁ‘(x,y.z.t) = V(x,y,2) x J(x,y,2z,t) (1.8)

for (x,y,z) €T such that 3(x.y.z) is well-defined. Here, and subsequently, the
subscript T refers to the component of the vector in question which is tangential to r.
Similarly, the subscript v will denote the normal component (thus (1.7) is the same as
tv = 0). writing

E-f vt -8 on T,

B, +8&

3-3‘,*3‘_-3‘ on T,
we see that (1.8) becomes uﬁ‘ =3 x 31' so that ﬁ‘ is a vector tangentfal to T and

perpendicular to 3- 3t'

R R e e

The state space in which we study solutions of the above system will be denoted by
L™ ‘(nn it is a closed subspace of the space H.(m of square integrable six-
’

dimensional fields (f(x.y.:,t), f(x,y,2,t)) with the inner product and norm

eI A AN T T S
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<«E Ak d) e I£! tef oF, + uil o av
. 1E, 52 =« i did (1.9)
Clearly H.(ﬂ) is a real Hilbert space with this inner product. Where a complex space is
e required, we employ conjugation as usual. The state space Hy d(0) is the closed span in

u‘(ﬂ) of those continuously differentiable fields (E(x.y.z,t), ﬁ(x,y,z,t)) for which

aE 3!Y 3!2

> x -
diVl-sx—*sy—"'}?' o,

M L1
3H v

leﬁ-b—xﬁ"s}—*}Tz'-O.

b ¢ io.ﬁo and i,.ﬁ‘ are two smooth solution pairs for (1.2)=(1.5), (1.7), (1.8),

the first corresponding to 520 on T, we see easily that

-]
% <(io.ﬁ°):(t,,ﬁ,)> -

., o, ok , W, of,
- !é] ((['oo STt 31] + n[no- T M Tl H,])dv

(using (1.2), (1.3)) =

>
!é[ (Eo° curl ﬁi - curl Eo- 51 + curl Hye f‘ - ﬁo- curl 51)dv

= (using div (E x H) = curl t.ed-2ccull

- !gl (aiviE) x H) + atv(E, x fig)lav

L}
+

- {] (By x i, ¢ B, x H)) + vas = (using (1.7))

L 4

i {I gy * Ky v gg il v B xily o B, w0 vas

-3-
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o {'! By, x iy ¢ B )+ vas
= (using (1.8) and noting that J 2 0 for fo, ﬁo)
== {.! (Ey o Sras . (1.10)

If we go through the same computation with §°,§°.§1 ,§1 both replaced by the same E.l’i

satisfying (1.2)-(1.5), (1.7), (1.8) we find that

g_:--{] (iaﬁ)-&u--{.[!t- 3as . (1.11)

ror ¥z0 generalized solutions of (1.2)=(1.5), (1.7), (1.8) can be discussed in the
general context of partial differential equations and strongly continuous semigroups. The
generator

MED = (3 curt §, - 3 cunt #) (1.12)

with domain consisting of Lﬁ in the Sobolev space 8; d(n)(-n‘ d(ﬂ) n a‘(m) having
(] ’

sero divergence and satisfying (cf. (1.7), (1.8))
£E) =0, H)] =0, (1.13)
NI

is antisymmetric and generates a group of isometries in n,.d(n). (See ([32], (33], [34)
for related work.) Sufficient conditions on ¥ so that solutions of the inhomogeneous
system (1.2)-(1.5), (1.7), (1.8) lie in H"d(ﬂ) and are strongly continuous there may be
obtained much as in [18], [19] but it is not easy to specify necessary and sufficient

conditions. Indeed, this is already difficult for the much simpler, but related, wave

eguation
2 2 2 2
pe XM Lv Vv v

e ad oy 2l

with boundary forcing terms. We will make some comments related to this in Section 6.

4=
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2. CONTROL PROBLEMS IN A CYLINDRICAL REGION

The main point in this paper is to study the question of controllability of the

electromagnetic field i.ﬁ by means of the boundary current - 3,'- By controllability

we mean the possibility of transferring an initial field i(x.y,z.o), ﬁ(x,y,z.O) e

ﬂ"d(ﬂ), given at time t = 0, to a prescribed terminal field E(xay.z.‘l').

o3
)
QJ fitx,y,2,m) € Hy,alB), specified at t = T > 0, by means of a suitable control current
O :
‘ig 3(x,y.:,t) defined for (x,y,z) €T, t e (0,T]. Because the homogenesous Maxwell
e
equations correspond to a group of isometries in H‘ d(m, it is enough to consider the
’
1 ': special case wherein
s, J'\"
N #(x,y,2,0) = 0, (2.1
4_,:‘.‘.3.‘.
LY f(x,y,2,0) 2 0 . (2.2)
N For a given space, J, of admissible control currents J(x,y,z,t) = 31(x,y,z,c) defined
e,
EVA A
.‘ on T x [0,T] we define the reachable set R(T,J) to be the subspace of Hy d(n)
‘c: ” ’
‘; ’:: consisting of states reachable from the zero initial state using controls b eJ.
e
R Following earlier definitions ((8], {26]}), our system is approximately controllable in
A time T if R(T,J) is dense in Hy d(S!) and exactly controllable in time T if
Al ’
Wi
'Y * -
f;} v R(T,J) ll'.d(n) (or some precisely designated subspace of n!'d(m).
:ié At this writing we are not able to discuss the general three dimensional problem
wherein the vector fields £ and # are unrestricted, except as stipulated heretofore,
2
-‘;‘ and £ has a general geometry. We hope in later work to consider at least some three
oo
::: dimensional cases which arige for special domains f. But for now we mst content
oy “ '
L4
. ourselves with the case in which I is a cylinder:
4y Q2 =Rx (=, = {(x,y,z)](x,y) € R C Rz, z real}
5 ' N
J.::,, where R 1is an open connected region in R?  with piecewise smooth boundary B. Thus
Wi
% 3 M = 3R x (~-®»,®) = B x (~w,=») .,
-—-é-' Even here wa can give results only for special two dimensional regions R.
[
\-’;‘ The two dimensional problem in the cylinder Q = R x (-»,®) occurs when we confine
:J'::, attention to fields
‘:ﬁ: » » » >
A Y] E = B(x,y,t), H = H(x,y,t)
70 -5~
A
ALY
3
271
]
N A)
L
- San
*
)!’
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which do not depend on the coordinate 2z corresponding to the axial, or longitudinal,
direction of the cylinder. (Note that this is not at all the same thing as requiring
that E,, H,, the field components {n the 2z direction, should be zero.) We
correspondingly consider only control currents
3 = Sixye

which do not depend upon z.

Of course the energy E in f 1is infinite under the above circumstances if 5. &
are not identically zero. We redefine E to be the energy per unit length of cylinder:

e(r) =% [ (ebdix,y, )12 + uifitx,y,t)1%)dxdy . (2.3)
R

The space Hx,d(n) is now replaced by HB,d(R)‘ Because

3Ez(x,y,t) dH_(x,y.,t)
—=—— =0 2 z
9z ’ 9z
we have
) 4 9B oH dH
- P R | P S
div E - + iy div ¥ = P + 3y (2.4)

M AH_ M 3H
i = E . Y. X
curl H (5;_’ Ix ' Ix y -

so that the equations (1.2), (1.3) become

3Ex 3Hz aux 3Ez
(1) ta—t—-‘-a-y— (iv) U‘a't—"a—y—

3Ey 3“2 3HY QEZ

(1) € 3 " Iw (v) 3T < ix (2.5)
JE 3H 3H 3H 9E 3E
2 . XX e m Y X

(ii1) € 3¢ ™ v (vi) LT Y™ + 3y

-6
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It is clear from (2.5), (1)-(vi), that if E(x,y,0), fi(x,y,0) are given, then the
subsequent evolution of E,(x,y,t), H,(x,y,t) determine all of the other components. As
for these components themselves, differentiating (2.5) (iii) and (2.5) (vi) with respect
to t and then substituting (2.5) (iv), (v) and (2.5) (i), (1i) into the respectively

resulting expressions, we obtain the familiar wave equations

a2 azzz %

uE —5= = =" 4 —5-‘- . (2.6)
at Ix dy
2y 2% W%

ve —= = =t — (2.7)
at ax ay

valid for (x,y) e R, t € {0,), provided E,, H, have enough derivatives, or provided
the equations are interpreted in the distributional sense. Assuming the initial states

i(XJY0°)p ﬁ(x.y.O) are divergence-free, we compute (cf. (2.4))

€35 (W * 3y ) = (using (2.5) (1), (1))
azuz aznz
(3m3y - 373%) = °
and similarly
3 9H
) X, _Y)a
v Gty =0

and we conclude that the fields remain divergence-free for all time.

»
Suppose, then, that divergence-free initial states E(x,y,O), H(x,y,0) are given.
9E

Then E_(x,y,0), H,(x,y,0) are known and (2.5) (iii), (vi) determine 3;5 (x,y,0) and

b1
== (x,y,0). If (2.6), (2.7) are then solved with these initial conditions, and

t13

appropriate boundary conditions, the complete gsolution of Maxwell's equations (2.5)
(1)=(vi), can be obtained by integrating (2.5) (i), (ii), (iv), (v). Thus it is enough to
work with (2.6), (2.7), and it should be noted that the divergence condition does not have

any bearing on E,, H,; it can be ignored henceforth.

-1-
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Figure 1. The Region R

It is important to recast the boundary conditions (1.7), (1.8) so that they provide
boundary conditions for (2.6), (2.7). We ask the reader to consult Figure 1, where the
region R with boundary 3R = B is shown. At a point (x,y) €3 we let P = Vx,y)
denote the unit exterior normal to B and we let - a(x.y) dsnote the positively
oriented unit tangent vector to B there. With t. the unit vector in the positive =
direction, 3, 3, t fors a positively oriented orthogonal triple of unit vectors. Given
an arbitrary vector v we can decompose it as

v = (wyoWg e (= ))

*»2 _ 2 2 2
iwl v“+vc¢v'.

The tangential part of ‘, which we have designated as ﬁt' may now be represented as
>
i -nlens (2.8)
and the current L 3, may likewise be represented as
»
Jo=al+ag.

Then

i « o -, L. CP P I P O R TS R L S R G R R
A - 5 '..-. > LY L9RH x-.\ > \.. I I T T \ - R




» L 3 » L 3 >
vxs-vxﬁt-vx(Jztdr.!qa)--a:c'raot (2.9)

Combining (1.8), (2.8), (2.9) we see that on B

llz(x,y,t.) = Jq(x,y,t) . (2.10)
HU(x,y.t) = -Jz(x,y,t) . (2.11)
Represent ;. ] as
+*
V= vxt + vyﬁ . (2.12)
»
s oxl + ayﬁ - -vyt + v‘ﬁ . (2.13)
Then compute
33‘ a:‘ it:
w " w \Dx + i-y— \!, = (using (1.3) , (2.13)

n L] L
X
RGP SR

= (using (2.11)) = - K! . (2.14)

The equations (2.10), (2.14) provide the needed bowndary comditioms for (2.6), (2.7)
respectively. Por N, we have the Dirichlet-type bowndary ceaditioa (2.18) while for

E;, we have the Weumann-type boundary conditioa (2.14). If we let

l’l(x.y.t) - ;g (x,y,t) ,
»
§- ﬁ‘ - 0¢¢ + °.t v

and differentiate (2.10), we have the more sysmetric form

1 ]
-,T'- (x,y,t) = U (x,y,¢t), T -0_(x,y.t), (x,y) €8 . (2.18)

We complete this section by discussing the gquestion of expression of the energy per
unit cylinder length, (2.3), solely in terms of N, and B,

We consider the equations (2.6), (2.7) with homogeneous boundary conditions

Ill‘ il‘
TS (x,y,t) = 0, TR (x,y,t) =0, (x,y)eB.

-9~
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We use the symbol A for the Laplacian:

2 2
A-a—ﬁa—.

3 xz 3y2

Initially we take H,, B, to lie in the Sobolev space Hz(R). This space must be
decomposed in order to attach a meaning to a™l.
The boundary condition for H, may be rewritten as

H (x,y,t) = hix,y), (x,y) e€B,
where, by the trace theorem, h @ 13/2(B). Then we can write

Hy(x,y,t) = B (x,y,¢) + f_(x,y)
vhere # '(x.y) is the solution of

Aﬁg(x.y) =0, iz(xd) = hix,y), (x,y) eB
and
ﬂz(x,y,t) =0, (x,y)esB.

The inverse Laplacian 4-1 is well defined on the functions llz- For B, we may write

zz(x,y,t) = l‘(x,y,t) + 'l"(t)

vhere ‘i.. as indicated, is oconstant with respect to (x,y) € R and
[ B (x,y,t)ds = 0 .
B z

It is well known that A-' is well defined on the functions l'.
We proceed first on the assumption that
-.(anot) - "(IJY't’o .:(XaY.t) - “(anot) .

We form new solutions of (2.6), (2.7) by setting

We then determine G, cy. 7. P, using the equations (2.5) with & replacing &, 4

replacing ‘. s0 that # ana & satisfy Maxwell's equations:

-0~




>
3: = -curl r ,

3; *»
€ 3 " curl G .

It will then be found that
£ curl f. fecurn é.
PFollowing this, (2.3) can be written as
B(t) =% [f (etcurl F12 + yicurl &1?)axay
R
] 3D+ (38 ¢ (k- 32 ]
R Ix dy
G_ 2 G 2 3G G 2
culGE) ¢ Y+ G - 50 Jasey
Then from (2.16) we have
. 3!; 2 3!;
e) =Yl {el(57) + 7 + (u 2]
Cul() + (328) + (e 3e2) 1} ey
-'/z!f c[(;——) *( ) + %
* "[(;%)2 + (:—:5)2 . (ll.)zldxdy

-

Now consider the quadratic form (for E, = !z)

-11=

(2.16)
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. azcz
R = (since G, satisfies the wave equation uE —5- = AG,
it

and the boundary conditions G,(x,y,t) = 0, (x,y) € B) =

._-.m
2L

. y 36,2 362
—5 (=866 = — [(52) +(50) ] -

ue ue ¥y
- Similarly
(i-‘.
e 3 1 ar, 2 ar_ 2
% z A=t 2y .1 _z
:ﬁ (2= -4 37) :5 (5= ) + (5,—) )
e
from which it follows that
ye
&4 E £} H £ 1|
It 2 z -1 ] = -1 z 2 2
;.\-5 B(t) -V,{I {32 -87" 557) + (570 =87 3)) + e(E)” « wn ) faxay .
Ly
A
t 1 | finite states - a fact which will be very careful later.
' It is necessary to modify this expression for gensral E,, H . We begin with
&2
Zl; B (x,¥,t) = i.(t) . o
“(,u The only possible solutions of the wave equation (2.6) satisfying '3—"""‘ = 0 and having
£

this form are
Eg(x,¥,t) = o9 + o4t
' where ¢ and ey are constants. {Such solutions are consistent with a constant boundary

current J for which ac % 0.) The corregponding E., I'y, H, are zero but

] H oH
“1“7:5-51'5;5'

It is not possible to express this quantity in terms of E; itself or H
'}

z° It is better

_,: to leave it in the form ¢ 71:_" Solutions of Maxwell's equations with E, having this
E
e form have energy expressible as a quadratic form in E, and a—:—-
)
o,
+
':f |
s -12= . |
.:‘; J
3,
LY

q' LIS
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Next we consider “z -H as described earlier. Such a solution is consistent with a

boundary current for which Jt = 0, constant with respect to time but possibly varying

with (x,y) € B. We may take H,, Hy, E, all zero. However,

dE 9H 3H
X z z
Rl rad T T

80 we may not assume that E, and !y are equal to zero. The energy associated with
solutions of this type is expressible in terms of
9aH_ 2 aH_ 2
z z
I [52) + (552) Jaxay
R

if integration with respect to t is permitted. 1In the sequel we will not explicitly

consider the timewise linear electric fields satisfying the above equations.
i We see then that a norm involving only E, and Hy and compatible with the energy
'
;fg~z (2.3) may be expressed as
A5
L}

i '2 - I! 2[(3!2 _A-I a‘z) + (auz -1 auz)] + ; 2 . ; )2
(B:.B:) A (ue) ' TG 3¢ Tt -4 T e( z) u( .

. 2 3E, 2 M, 2 M, 2 .
PolE ) + 0. (557) +og(57) + oy(552) ] axay (2.17)

where 0,,0,,9,,9, are positive numbers. It will be seen that this is a weaker norm than

{5@5 the one associated with a pair of wave equations, viz.: -
Ty g
Ly
;’m"’i 2 e, 2 I, 2 2 )
Hh): 1e_H 1" - 1{! {uc[(ﬁ_) + () ]+ IVE_1° + 19H 1 }axay . (2.18)
a:z an‘
We will denote the Rilbert space of states E,, Hy, 3’ ;;- lying in H'(R), H’(R).

Lz(k), Lz(n), respectively, by H. This space will be very convenient for use in the
remainder of this paper. In some cases we will add boundary conditions to the
specification of H, the space with norm [ I, without changing the symbol, to correspond

to an agreed specification of the states in H by similar boundary conditions.

-13-
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3. SOME CONTROL CONPIGURATIONS

N We describe here two possible realizations of the control problem which we have posed

and indicate wvhy we have chosen the mathematically sore interesting (i.e., more difficult)

one to work with in this paper.
Let us assume that [ = Q@ = B x (-=, =)

is covered by one or more layers of conducting

kA

bars, arranged in rows as shown in Figure 3.1.

In the case of a single layer of conducting

bars shown in Pigure 2(b), the bars are arranged

so that they make an angle 9, 0 < [8] < "5.

with the vector J (ct. Figure 1), while in

the double layer case (Figure 2(a)) they are Pigure 2(a). Double Layer Control

arranged so that the bars in the second layer

make an angle ¥, 0 < 9] < 2, 9%8, uith

<y the vector J. The current in any row of bars
parallel to the z-axis is independent of z;

i.e., constant for all bars in that row. As

we consider successively smaller bars we

obtain, as an ideslization, the boundary

current vegtor

Figure 2(b). Single Layer Control
$ix,y,t) = J(x,y,t)(cos 85 + sin 0F) (3.1)
in the single layer case, J(x,y,t) denoting the current strength with the sign determined
s0 that J positive yields a positive current component in the 3 direction. The

corresponding formula in the double layer case is

Fix,y.e) = 3(x,y,t)(cos 83 + sin 00)

-;: + lex.y.t)(coq 03 + gin OE) . (3.2)

oy

A The current components are, in the single layer case

&y

1': Jo(!,y,t) = J(x,y,t)cos 0 ,
e

- Jz(x,y.t) = J{x,y,t)sin 8 ,

Lk'y

%A..;

1\‘\‘1‘ "14-
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and in the double layer case,

Ja(x,y,t) cos 8§ cog ¢ J1(x,y,t)
(3.3)

Jz(x,y.t) sin © sin ¢ Jz(x,y,t) .

The determinant of the matrix in (3.3) is sin (Y - 08) # 0 4if % # 6 in the range

L]
0<18] <3, 0< ¥l < 2° Thus in the double layer case J, and J, are independent

if Jy and J; are independent while in the single layer case Ja and J, are fixed
non-zeroc multiples of each other.

The double layer case is easily disposed of in the light of earlier work on boundary
control of the wave equation. Keferring back to (2.10), (2.11) we now have, for

(x,y) ¢ B=23R, t e [0,»),

H
3:5 (x,y,t) = Uu(x,y,t) = cos O u,(x,y,t) + cos ¢ “2(xoth) .

)4
3;5 {x,y,t) = -Uz(x.y,t) = -gin u1(x,y,t) + cos ¥ uz(x,y.t) .

3J1 332
u'(x,y,t) = W (x'Y't’p “z(x,y,t) = K‘ (X'Y't) .

Since U, and U, are independent if uy; and u, are, the control problem splits into

two uncoupled wave~equation problems, one for E, and one for Hz. These have been

discussed thoroughly in (21, (3], (15), [16], {[22], (23], (25] with affirmative
controllability results for various control configurations and will not concern us further

here.

In the remainder of this paper we study the single layer case. If we let

J
ulx,y,t) = %: {x,y,t) (3.4)

we now have th‘ wave equations (2.6}, (2.7) for E,, H; and the boundary conditions

QH‘ Y}
* (x,y,t) = cos 9 It (Xe¥,t) ¥ aulxy,t) , (3.5)
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3v_ (x.¥,t) = -sin 8 35 (x,y,t) = B ulx,y,t) . (3.6)

The control problems for E, and H, are now coupled because the single control
function, u(x,y,t), appears in the boundary conditions for both E, and H,; we have to
contol both systems simultaneously using the same control function.

If we rely on experience in a single space dimension, which has proved generally quite
helpful in the control theory of a single wave equation, we are led to believe that systems
like (2.6), (2.7), (3.5), (3.6) may, in fact, be controllable. Replacing u(x,y,t) by

ugl(t), ug(t) and taking 0 € x € 1, the one dimensional equations are, using variables

v, w,
2 2
o a_; - 3—;- =0, (3.7)
at Ix
v (g v 4 -
E Ty (0,t) = nuo(t), 3t (1,t) = au,(e) , {3.8)
2 2
P ?—§ - 3——;’ -0 (3.9)
at x
dw dw
5'; (o:t, b -B\Io(t)l '5;' ("t) - B“‘(t) (3.10)
(note that - %5 corresponds to the exterior normal derivative at 0]). Letting
Ty (3.11)
x
~ _ 3w
- e .12
"} " (3.12)
we £ind that
1% W%
p5-=0, (3.13)
t Ix
and
2~ 2~
-'-‘21 - 3—; -0 . (3.14)
13 ax

Differentiating (3.11) with respect to t and using (3.8) we have

-16=

) " ‘o’ .. l. u. '- '. .. --. -’ -. - . - - - - - . - - - - - ~. -
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2 ~

13w 1 3v a

— cm—— 0' W e — & - . ’ .

p axz (0,t) 5 Ix (0,t) 5 uo(t) (3.15)
1 azv 13v a

-2 (1 PR AT - 32 .

> 3x2 (1,¢) o Ix (1,¢t) ° ui(t) ’ (3.16)

while differentiation of (3.12) along with (3.10) yields

2 ~
L 0,0 = (0,00 = -pucey | (3.17)
2 ~
:t:x (1,¢£) = %; (1,£) = Bui(e) . (3.18)

Combining (3.13) with (3.14), (3.15), (3.16), (3.17), (3.18), we see that

Bv + oY v - i both gatisfy the wave equation and

0109
]

8V + 200,80 =0, & (8% + T 31,0 =228 Lv(qy ,
] Ix P p 1

~ ~

(8% -g-:)(o,:) - "’—:1 ug(e), (8% - 25 (1,00 = 0.

equ
H]
n1w
]

Thus the control problems for BV + % ¥ ana BV - s w are both of Neumann type and are
uncoupled. Affirmative controllability results are then available from [20], [21}, ([24].

If we replace ug(t) (or uy(t) by 0 in the above, then 8v - % v (or Bv + s w
will become completely uncontrollable and our original system must therefore be

uncontrollable. This result at first seems to predict failure for the enterprize which we

now undertake for the two dimensional case.

-17-
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4. APPROXIMATE BOUNDARY CONTROLLABILITY

By a simple change of scale in the t variable, and renaming of the independent '

£ variables, we may assume that the system of interest is

- 2 2 2
v v 3 i
N P I A I (4.1) |
3y t x ¥ t>0, i
(x,y) € R
. 2 2 2 ' ’
" _3_:_3__:+3_w' (4.2)
7 w2y
*
i with boundary conditions
£
i v
5 3¢ (xe¥ot) = aulx,y,t) (4.3)
t>0,
(x,y) € B = 30
'g% (x,y,t) = Bulx,y,t) (4.4)

We will not, in general, assume that u(x,y,t) can be selected at will for all values of

(x,y,t) shown. More on this later.

?’ Because the system is time reversible, it is sufficient to analyze controllability in
L
et terms of control from the zero initial state
A
"
- v
vix,y,0) = ETY (x,y,0) =0, (4.5)
o (x,y) er,
v
wix,y,0) = 3= (x,¥,0) = 0, (4.6)
31 to a final state
i
?K‘
{ v
e vix,y,T) = vo(x,y). EYY {x,y,T) = v‘(x,y) (4.7)
;; {x,y) eR .
A v
« ¥ wix,y,T) = w, {x,y), 37 (x,¥,T) = w (x,y) (4.8)
{; ’ o at 1
Iy
&
“¥e
' -18~
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We have noted in Section 2 that the 1 I~ finite states are dense in the | I~ finite

atates. In the present context this means that we can work with the Hilbert space of

3
states v, %%. v, 5{ with the inner product

((Vl glé' w, g—:)l (;: ‘5—: ;r r))

v 3v , 3w 3w , 3v 3V _ 3w dw _ Iv AV aw 3w
UL A o R TS A0 2 e

a space which we will refer to as a- The norm is § § (cf. (2.18)) with ue = 1. As we
have indicated, this is a dense subspace of H, the Hilbert space obtained by use of the
norm 1 1 (cf. (2.17)),

The final states (4.7), (4.8) are not quite arbitrary in ﬁ i1f the control u is
restricted so that its support is contained in a proper relatively closed subset BC B.
Since the condition

av
ETY (x,y.t) = a u(x,y,t), (x,y)esB
applies, we may as well adjoin the additional condition

vol{x,y) = 0, (x,y) €B - By = By . (4.10)

The trace theorem ({11, [19]) assures us that this describes a closed subspace of H,

which we will call H The only restriction on H1 is (4.10); vy is permitted to have

1°
arbitrary values in H1/2(31) and wy, wy are unrestricted in H‘(B), B = Lz(l),
regpectively.

Let U be a given gspace of admissible control functions, about which we will shortly
have more to say. For each control u € U we assume the existence of a unique solution

v,, w, of (4.1)-(4.6) for t > 0, (x,y) € R. Very general sufficient conditions for this

u’ "u

to be the case are given in (19]. We define the reachable set at time T, R(U,T), to be
v dw

u
rou (X,Yp'r)' w“(xvy:‘r)l

3t = {(x,y,T) which may be

the set of all final states v,(x,y,T), Ys

realized in this way. The set R(U,T) is a subspace of H if U is a linear space,

1

which we will assume, and our system is approximately controllable in time T &f R(U,T)

-

is dense in l‘ (then R(U,T) is also dense in H because 1 | is a weaker norm than

is dense in H). Evidently R(U,T) 1is dense in H just in case, given an

11 and H 1

1

) -19-
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arbitrary state (;0,;1,30,;1) in H

aw

av
{((v (x.y.T), (x,y,T), w (x,y,T). (X.y.T)]:(v ,v R ,w )) =0,
0

at 0

u ey} = (3’0,31,30,31) =0. (4.1%)

Let v(x,y,t), wix,y,t) be the unique solution of (4.1), (4.2) satisfying the terminal
conditions at time T:

~

~ ~ v -~ o~ ~ 3w ~
vix,y,T) = Vg 5% (x,y,T) = Ve w(x,y,T) = Yo’ ETY (x,y,T) = L) (4.12)

and the homogeneous boundary conditions

— (x,y,t) =0, (4.13)
(x,y) eB, t>0.

a, (x,y,8) =0, (4.14)

Computing the quantity

av

av
dt-. ((v (x,y,t), at: (x,y,t), Y. (x.y,t). (x, y.t))

~

~ 3 ~ aw
(V(x,y,t), ’a_;! (x,y,t), wix,y,t), 'a% (x:Yrc)))
using familiar duality theorems involving the Laplacian and integrating from 0 to T

(see (22), (23], (26] for details in the case of a single wave equation) we see that

Bw
((V (x,y,T), r‘ (x,¥.T), " (X,Y,T), (er'T))7 (V01V1l"’°l" ))

Pt 3v 3y avu
- I [ [ (x:Ylt) (lelt) + '_ (x,y,t) =— {x,y,t)
o B it v at

3~ 3w 3~ Bw
(x,y,¢) 35° 2 (x,y,t) + 3y (Xe¥ot) 3T 2 (x,y,t)]dasae . {4.15)

Then using the boundary conditions (4.3), (4.4), (4.13), (4.14) we see that the above
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reduces to

T ~ ~
v Iw
{ £ [a 3v (x,y,t) + 8 % (x,y,t)]u(x,y.t)dadt . (4.16)

If, as discussed above, we suppose that B has the disjoint decomposition
B=BoUn1,
with By relatively open in B, and that u(x,y,t) 20, (x,y) € By while on By u is
unrestricted save for the specification of the admissible space (e.g., we might take
U=c(B, x (0,T]), U= L2(51 x (o,T]) , (4.17)
or any of many other possibilities), and if we suppose the first equatiocn in (4.11) to
hold, we conclude that (4.16) vanishes for all u € U, We know from the trace theorem
([1], {19}]) that the partial derivatives
at’ v’ at’ v’
restricted to B, all lie in H‘lz(n) for t e (0,T] and vary, with respect to the norm
in that space, continuously with respect to t, i.e. they lia in cuV/2(p); (0,T]). We

suppose, as is the case for (4.17), e.g., that U includes a total subspace of the dual

space of C(H1/2(B1))[0,T]). Then the fact that (4.17) is zero for all u e U implies

~ ~

) 3
a 33 (xy,t) +8 5% (xy,t) =0, (x,y) By, te (0,1 . (4.18)
We also have (cf. (4.13), (4.14))
v w
3; (x,y.t) = 0, v (x,y,t) =0, (x,y)eBy,, te[orT]. (4.19)

The boundary values of vV and ¥ are therefore overspecified on B, x {0,T). The proof
of approximate controllability, where it can be carried through, depends upon being able to
use this overspecification to show that

vix,y,t) £ 0, wix,y,t) 20, (x,y) €RrR te (07T,
and therefore to conclude that the implication (4.11) is indeed valid so that R(U,T) is

dense in H1 and hence in H. We carry this argqument out for the case in which R is a

rectangle and By is one of its sides in Section 5.

-21-
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! Following the development in (6], it may be seen that our system is exactly
& 2

ft controllable in H,, using the control space U =L (B, x [0,T]), just in case

*

h]
ol

” 2% 3w

o v w ~ o~ A o~

LN la + 8 ] > Ki(v_,v_,w_,w )1, (4.20)

» 3t Lz(nixlo,rl) 0 et H

..‘ {

“d for some K > 0. 1In general this is a very difficult result to obtain but we are able to
g-}g obtain exact controllab.lity, by other means, for the case where R 1is a disc in R?

ATY

‘ and By = B is its boundary, a circle. This result is developed in Section 6 where it
25 will be seen that it is heavily dependent on certain properties of the Bessel functions.
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\ 5. THE CASE R = A RECTANGLE, B4 = ONE SIDE.

Y The work here can be carried out for a rectangle with arbitrary dimensions, but all
‘-’Pq essential ideas are contained in the notatiocnally simpler case
""‘ R={(x,y)|0 < x< 7w, 0<y < n}

to which attention is restricted henceforth. We will assume that B,;, the portion of the
"Lﬂ.‘g boundary on which control is exercised, is one gide of R, without loss of generality it
'}-' is the set

B, = {tr,y)o<y<x}. (5.1)

‘3‘ fs We consider then ‘;. - satisfying (4.1), (4.2) in R X {0,T] for some T > 0, and also

zz‘n satisfying boundary conditions
h ]

L4 ?1 {x,y,t) =0, 3_\'1

o T av
b

av ow
a3y (v,y,t) + B 3t (%,y,t)

(x,y,t) =0, (x,y) B =3R, t e [0,T] , {5.2)

v v
= a 3—-: (w,y,t) + 8 5% (x,y,t) =0, 0<y<n, te(f0T] . (5.3)

'\’“\ We may assume without loss of generality, since the wave equation is time reversible
' with either Dirichlet or Neumann boundary conditions, that ¥ and W are extended to

_\‘{ satisfy (4.1), (4.2) on -= ¢ t < = and that the boundary conditions (5.2) hold for

‘i:sz (x,y) € B, t € (-»,»), We may not assume that the boundary condition (5.3) is applicable

?, \V beyond [0,T], however, if controls are restricted to have support in B, X (0,T]. Let

—— § >0 and let s(t) be an arbitrary function in c”(~=,®=) with support in (-6,8).

8y Define
\‘.'{ - -
2! vix,y,t) = [ slt - 1)vix,y,0)dt , (5.4)

] )

wix,y,t) -[ s(t - t);(x,y,t)dt . (5.5)

e -
S
4. :‘ Then Vv, W are solutions of the wave equations (4.1), (4.2) satisfying boundary conditions

" -23-
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g v 2w
Y w
he 5-; (x,y,t) = 0, 3—\) (x,y,t) =0, (x,¥) €B=03R =<t <=, (5.6)
while
v dw
~ @ 3% (Ty.r) + B 3¢ (Te¥,t) =0, 0<y<uw, tels T-46]. (5.7)
Moreover, it can be shown that V, w are of class C  for (x,y) eR, -= <t <= If we
¥ i d ~ ~
~ can show Vv 2 0, w 2 0 for any such choice of s, then Vv £ 0, w = 0,
o
;‘. Let us define, for (x,y) € R, = <t <=,
bt
B!
4 $0x,7,8) = a 3 (xy,t) + B 2 (x,y,t) (5.8)
& Yo Tx' X, Y, It 'Y . .
i
..' From (5.7) we have
%.; #x,y,£) =0, 0Cy<w, tels T-6]. {5.9)
( Since a and B are constants we have
S
> 2 2 2
3 3—%-3-%4-3—:-, (x,y) €R, =<t <w, (5.10)
t: at ax Ay
. Let us note that, since Vv satisfies the wave equation in R U B,
by
‘::" a3y 2%
a "_2" (x,y,t) + 8 m (x,y,t)
s at
&5
2. 2‘ -~
v v Aw
e - a[;—i (x,9,8) + —5 (x,y,£)] + 8 3= (x,y,8) . (5.11)
¥ x dy
‘va»é
W
g’; Setting x = % in (5.11) and differentiating the identities in (5.6) with xespect to ¢,
2|
we gsee that the left hand side vanishes. Then, comparing (5.11) with (5.8)
s
~ -
N 39 a3y
I (v,y,t) = -a ~—z (*,y,t) T aly), 0<y<w, §<tc<T~ s, (5.12)
K‘
R
the last identity being valid as a consequence of the first condition in (5.6).
’ The two conditions, (5.8) and (5.12), satisfied by ¢ at the boundary x = x enable
3 us to use Holmgren's uniqueness theorem (see ([S] or (13], e.g.) in much the same way as it
o -24- :
1&
o
b}
5
1)
L 4
g




LY
ks \)‘
’
AN
1)
LN
Do
Yoo wss used in the proof of the approximate controllability of the wave equation in (22}, [23]
-.j to see that 1if
!
54 T2+ 28 (5.13)
2
’ then ¢ must be independent of t for 1 + 8 < ¢t <T-1-8§, {.e.
#858 o(x,y,t) = ¢i{x,y), (x,y) @R, 1 +8§<t<T~-1-28§. (5.14)
pd
","f - -
-L"':: Because V and w satisfy the wave equation in R with the homogeneous boundary
s, W
-".;)‘ conditions (5.6), and are of class c in RU B, we have c”- convergent expansions
o - - - = e e e
"- vix,y,t) = vo(x,y) + I 1 (v, e + Vies® Yain kx sinjy , (5.15)
3 k=1 =1 3
g! ‘
4 - iw
- - t -1 t
jx; wix,y,t) =w, + §J 7 (w .o kKi° i u e “x3 Jeos kx cos 3y , (5.16)
: 0 k3 X3
k=1 j=1
£
%
“. where
AT IR
: Y '3 Iy (5.17)
55 . - .
vo(x.y) is a C function in R U B such that (cf. (4.10))
v, volxey) = 0, (x,y) €B - {(x,y)]0 <y <1} (5.18)
"ﬁ" a
g‘-f. and Yo is a constant. Then, from (5.8),
A
& .
v v (x,y)
< ¢(x,y,t) ~a Y -
A9
R "‘-' - o Xukjt
¥ :;. = ¥ cos kx[ § (ckvkjsln iy + iﬂmkjvkjcos jyle
.~,.\: k=1 j-‘
———— - - - -“’kjt
o + § (okv, ,.sin jy - iBw, _.w _cos jyle ]. (5.19
K-.Ye. 2 k3 %3x 3
AN 3
o,
”.'.‘:x .
4'.:\ still - convergent for (x,y) € RUB, =» < t <=, Noting (5.14), we see that the
SRJEN

left hand side takes the form

av,tx,y) o ley) .
ix,y,t) - a —ax - $(x,y) -~ a < = #(x,y) ,

1+8<ct<cTr-1-86. (5.20)
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We now strengthen (5.13) to

T >4 + 28 (5.21)
and we see that the time interval in (5.14), (5.20) has length > 2, {.e.
T=-1=-8-(1+8)=17-(2+2§)>2. (5.17)

Since the functions ¥ % cos kx are orthonormal on 0 € x € ¥, we conclude from (5.19),

(5.20) that for k = 1,2,3,...

- i(llkjt
jZ1 (ckvkjsln jy + iﬁwkjwkjcos jyle
T - - ~iw ,t
+ Z (akv, sin jy - iBw .w _cos jyle 3
gmr e “1"k3
2 -
- | #(x,y)coe kx ax = o ly), 14+8cecT-1-8. (5.22)
0

Classical results of Levinson and Schwartz ((17), (27}), which have frequently been
used in control studies of this type (see, e.g., (12], [21]), can now be used to show that

for each fixed k, the exponential functions

tio .t sif k3e3% ¢

e k3 e v §=12,3,...,
together with the constant function 1 are strongly independent in Lz(t) for any
t-interval I of length > 2. This clearly contradicts (5.22) unless we have

Ok(y) 20, 0C<y<w (5.23)
and

ckvkj

sin jy + ibu&jvkjcos jy =0, 0<Cy<w, J=1,2,3,...0.
But then, since for each j sin jy and cos jy are independent on 0 € y < ¥ and since
none of a, k, B, “kj are zero, we conclude that

Vg = 00 Wy =0, kT 4,23, 3= 12,3, . (5.24)

Since (5.22), (5.23) show that

;(x.y) = Z Ok(y)cos kx = 0 ,
k=1

~26-
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1
N (5.19) gives -
: Bvo(x,y)
$~1 S,y t) = dlx,y) =@ ———, (x,y) ER, (5.25)
N 1+8<ct<C<T~-1~§,
Kt ]

Noting (5.15) and (5.16) and the fact that V(0,y,t] 3 0, we conclude from (5.23) that ,
£ :
':‘; V(chIt) 2 vo(xly) ’

N 1+8ce<T=~-1-6, (5.26)
'V‘T-‘ wix,y,t) = wo e
Wy Since vix,y,t) £ vg(x,y) is a solution of the wave equation with (cf. (5.18))
;..‘:\ vo(x,y) =0, (x,y)e€B-{(r,y)I0 < y ¢ v}
: ; it must in fact be a solution of Laplace's equation there. Then we compute
‘1'

- - 24 2
- v 2 v 2 - v v
"N 0 0 0 0
"g f [(}—;— (x.y)) + (F (x.y)) + vo(x,y)(F— (x,y) + ] 3 (x,y))]dxdy
IO R x b4
‘—"}i
" -~ -
= [ div(vo(x,y)qrad vo(x,y))dxdy

R
£ R - LI av
A = f v, (x,y)grad v, (x,y)evix,y)ds = [ v _(¥,y) =2 (v,y)dy . (5.27)
r\j B [ 0 0 0 Ix
s
'.l -
e Combining (5.9) and (5.25) with the fact that Yo satisfies Laplace's equation we conclude

from(5.27) that

-~ -~

avo 2 avo 2
{! [(g‘- (x,y)) + (W (x,y)) Jaxay = 0

'}“: and this, together with (5.18), implies
S50 )
H %* -
NS v.(x,y) 2 0. (5.28)
A 0
P Combining (5.26) and (5.28) we conclude that
L
S -
O] vix,y,t) £ 0
- - (x,y) € R, -® ¢t (m (5.29)
A _ y
3 v‘~ V(x'Ylt) = '0

S the result for == < t < » being an immediate consequence of the result for
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iy 1 +8<ec<T-1-8. Since this is true for every § > 0 and every s(t) in (5.4),
[] - -~
: (5.5), we conclude that a comparable result obtains for VvV, W in (4.11), (5.2), (S.3). It
', -
s, follows (since w = constant is a zero state in H and in H) that (cf, (4.9) ff.)
",
. ""o"’1"o""1"u - ”vo’v1"0’w1"l-l =0
]a and, from the discussion in Section 4, the approximate controllability result follows.
k<
A
Ry
kY
£
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Xy
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I\ }\':‘ 6. SOME EXACT CONTROLLABILITY RESULTS IN THE CASE OF A CIRCULAR CYLINDER '
T |
N
'-: - We consider now the cagse § = R x (-e,®) with
J'-‘.- o 2 2 {
$‘-".' R ={(x,y)Ix® + y° <1}, |
et 1! :
B'?R-((x,y)lxzi-yz- 1} .
o
.\"v With introduction of the usual polar coordinates r,0, the equations (4.1), (4.2) now
,{ 4 become
‘,"2 32v_32v*13_v*_1_32v (6.1)
atz arz r dr rz aa2
L]
.
,,::"\ 2w 2% 1w . 1 3
vy —— . —— o  — — (6.2)
o] 2 2 rar 2 .2
ot ot ar r® 230
]
'
. ¢
b~
and the boundary conditions (4.3), (4.4) are transformed to
c 4
:::‘ v
“,:: 3¢ (1,8,8) = au(s,t) , (6.3)
\ 4
o ny '\: 3
:‘ ~ ﬁ (1,8,t) = Bu(0,t) . (6.4)
% .‘f. Writing
LA -
A % v(r,0,t) = § vk(r,t)eike, A (6.5)
“Q k==
aoxL|
ki 'f " L4
wir,8,6) = § w(r,0et*®, w_ =q (6.6)
N k o S
NN k=-o
l"- ¢
e .q
ot o
Ly
N we,e) = I u (0re*® (6.7)
.‘.'i;j‘.‘, K= —m
‘-' l.‘
e 3 we arrive at an infinite collection of control problems in the single space dimension, r:
,~'.::)
s a®v %y v, .2
~i:-’ __'E_- k+l_“.-5_v = 0 - ¢ k C o 6
NN 2?92 ot 3% ’ (6.8)
. -3
a——
N 2%y 22w 1% 2
AR ke Kyl kK _k L .0 -~ ck<m (6.9)
e 2 2 r r 2 ’ ‘ *
':'": at 3 r
'ﬁ
Yo %
o,
LAY
2
LA S
e’
-
o, N
Yo
f:}: . -29-
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N
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h .
e
J
¢
R/
d
‘
L]
q
. avk
) T (1,t) = au, (t), = <k <o, (6.10) |
v awk
o — (1 - - < . R
. Fy (1,t) ﬂuk(t), - k<> (6.11) ‘
We will first treat the equation (4.1) with the boundary condition (4.3) which, as we
have seen, reduces to the set of problems (6.8), (6.10), -= < k < =, With
5 v, ( )
- . L4 v, {r,t
2e,0,0) = § oz (r,e)et*® = ML MRS L AT Y
k t at
k=~ K= e
: we have the equivalent first order systems
g ) (v (r,t) 0 Iyev, (r,t) v, (r,t)
v = (Y ) = ( I8} =, (VkiECEY) (6.12)
B
N at zk(t,t) lel 0 zk(r,t) 1k} zk(r,t)
3
'.\‘
.j where Ljy| is the differential operator on the right hand side of (6.8). The boundary
conditions (6.10) become .
A -
it Zk("t) - Gllk(t)p - (k C=» , (6.13)
o
¥ The eigenvalues of the operator I'Ikl with the corresponding homogeneous boundary .
condition
. Z (1,8) =0 (6.14)
¥
: are
A
0, tiwlkl'!, L= 1,2,3,¢.. ,
where @, ¢ 1is the L-th positive zero of the Bessel function J|)(r) of order |k|.
’
. The corresponding vector eigenfunctions are
; < <
(Olklo(r)) ( OIklz(l') - k -
d ! 2=1,2,3,...;
h ] tiw'kl,l O'k“(r) v 203,
.
(]
‘) where
g ¢ (r) = a elx! -tk Cm, (6.15)
'y I1x}],0 Ixi,0 ‘
!
| -10-
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(r) =

. 1)t I LT R DI

0 The normalization coefficients Alk|,o' Alkl g are chosen so that
,

N ! 2 ! 2 1
O [ el ofe)ae = o [ el te)l%ar = 52, £ = 1,2,3,.0. . (6.16)
0

( 0
X
b Thus

Ikl + 1 “® Kk Cew

Mxi,0 ° T ’ (6.17)

while, as may be gseen from [5], e.q.

“Ix],2

A - (6.18)
- Ikl .2 -
2 T 3,2 0

Yo The state space in which we wish to work, for the present at least, is (cf. (2.18')
~ 1
', H= [(:)Iv en'(m, zetim}
with the inner product

((::)- (::)) - L (Vv Vv, + z,z,)dxdy

and agsociated norm. Since the 0'k| L satisfy the homogeneous boundary condition (6.14)
,

one easily sees that

R o1ke .
l( lklt')o )l';; - .lkl o‘ikeAulkl oe““’)dxdy
R . [

> y
‘ }éf'f*f‘.&

ix8 2?0 Lik8

* I ’Ikl,oe ar

2x
+
ae + -'-’-‘—I-'—lf fxla8
3R 0

’<:5EJE;E’5?§

= 2|kj(lk] + 1), =<k <w», (6.19)

while

R



M - A f e | “dxdy
I [ tlu'k"!’|k|l‘ |" 1x(,2 R Ixl,2

t 7 enunE 2
LT T e Sy = g g ] I gl ey = By, (62200

2
x'klll (u|k|‘z) y, =® Ck <>, ¢ 1,2,3,0¢ &
0,0 ~
The state ( 0 ) has zero norm in H. Nevertheless we will not neglect this component.
If v, vV both satisfy the wave equation and (6.3), (4.13) on 3R with initial state

(4.5) for v we have (cf. (4.16))

~ T ~~
v(*,*,T) v(e,*,T) v
~ =-ga ( t) t) dsdt . 6.21
((l(’,','!'))' ('(".'T)))i { Lan uix,y, '5'\‘, (x,y, ( )
It may be shown that this result is valid for all u for which the solution (in the

generalized sense) v 1lies in # and varies continuously with respect to t. This class
of controls u is discussed in [19] and is known to include, e.g., u € c([O,T]:H‘/z(n))-

If we assume (:) given by the f- convergent series

-
v(".,t) - ik6
(z(.'.'t)) x): V08 0y 00 ) Y

I

kw—o =1

1x8 1x8
- - ¢ e ¢ e
+ Ixl.2 - Ixl.,2
DI MY [ xke] MM [ 1ke”

191,281k ,20 “191, 0¥ k1,28

and successively let

~ . 10 - 1k8
v 't’] . [ et 00 01k, [ k1,2 ]
o s @ ike ’

Z(e,o,t) 191, 2%0k1,2°

(t-T) 0|k|lzeik°

ki e
-iw ¢ e
Il 2%kl,t

- { k <@

- &

RRRCE - 3onnan -4

L4
4
b2
b
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for T > 0 we arrive at the equations

31x1,0 -1
r

T 2x 8
2kf ikl + Vv, (1) =a f [ u(e,t) (1) e "*Tavac
x,0 o o F)

1) T
1x{,0
= 2ma ——— (1) g u (t)ae , (6.23)
T 2 iw (T-t) 34
+ = x|, 1kl,t -1x6
I AC g £ u(o,t)e —r (1) e dsae
¢ T iw (T=t)
= 2na -—lgéii (1 ! e fel.t uk(t)dt R (6.24)
0
T 2% s ) {T-t) 3¢
. - lklll lk|.2 ‘ike
lekl,lvk.l(r) e £ { u(®,tle T (1) e afde
3 T -iw (T-t)
= 2xa I:l'l ([ e Pl w (t)ae . (6.25)
0

Thus the Dirichlet boundary control problem for (6.8), (6.10) is reduced to a moment
problem (6.23), (6.24), (6.25) for which u,(t) wmust be a solution. We proceed in much

the same way with the Neumann boundary control problem for (6.9), (6.11). We let

bg ® Jw (r,t)
tr,0,0) = 1 g (r,0et® - k L )
k t it
km~co K=o i
and obtain, in place of (6.12),
3_ (w (r,e)y _ (0 Iyew, (r,t)y . vy (r,t)
Tt (C:(l‘qt)) (H|k| 0)(‘);(:":)) Mlkl(z:(r,t)) . (6.26)

The boundary conditions are now

3wk
;—(ht)=5uk(t), o ( k <o,

The eigenvalues of Mlkl with the corresponding homogeneous boundary condition
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dw
k
3c (1,e) = 0

are, for k = 0,
0, *1“0,1' L= 1,2,3,... ,
where “o,t is the 2~th zero of the differentiated Bessel function, jé(r), of order
0, and, for k # 0,
tivlkl,!' L= 1,2,3,¢e. ,
where vk,l is the 2-th zero of Ji(r). In tﬁe case k = 0 the eigenvalue 0 has double

multiplicity. The special solutions taking the place of (6.22) in this case are

{

wie,o,t) Yoo (t = Ty,
~ = ' (6.27)
C(’:‘:t) ’ 0 Woo
where voo {s such that (cf. (6.16))
1
2 1 1
[ r¥ dr = o=, t.e. $,0 = — .
0 00 2% 00 /e

In all of the other cases the vector eigenfunctions take the form

*'k|,£(t)

- ( k <o, L =1,2,3,.,.
9900, 2% k1,2

(r)’’

where
-k < w,
- J. (v s
Yo T B ikt Lt = 1,2,3,...

the normalization coefficients

v
1x],2
o 32, : {6.28)
Ixl,t Ikl 1kl

Bikl,e =

selected so that

R
] iy ()1 2ar = = .
o Ix]l.2 2%

The corresponding special solutions of the homogeneous equation are

-34~-
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00
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A5 %

V)
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- ; - 1k8
(Bteamatdy T At ik, 28
Tle,,t) ike | ’
v
DI A T
=1 () v e1ko
e .2 el 2 (6.29)
ik@ ¢ .
e, 2%kl ,2®
As in (6.20) it may be seen that
*l 2
k.2 l 2
= 2p P = (v )7 .
I*“’lkl.z"lkl.z 3 k|, x|, Ixl,2

Let w satisfy the wave equation and (6.4) with w(x,y,0) =0, g(x,y,0) =

%% (x,y,0) 20 in R. We expand (:) in the form

v 0
(e,°,t) 00
(:(.'.:t)) = woo (t) (o ) + ;oo(t)(voo)

- ix6
+ E N S Yixi.e® - Y1kl 28
K, ik K.t

1k@

k= L1 1x0

-1
Yier,e¥ig, 00 Vit ¥kl .28

If w satisfies the wave equation and the homogeneous boundary condition (cf. (4.14))

~

%% (x,y,t) =0, (x,y)eB, t>0,
we find (cf. (4.16), (6.21)) that

~

«,s,T) (*00,7) T
((:((.'.IT))' (g('l.l'r))).- -8 ‘g
H

u(x,y,t) %% {x,y,t) dadt . (6.30)

/
B=3R

~

Employing (6.29), (6.3) successively for (%) we arrive at the equations, for

-k <, L£=1,2,3,...,

-35-
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2u wl (1) =8 IT IZ' (8,t)4v v (e *8agqe
Il 27,2 o o Tkl tel, e ¢
T 1v|k| L(T-t)
= 20810 0 GV, e (1) ] e ! u (t)dt , (6.31)
0
T 2% -iv (T~-t)
= = - Ikl,2 -ik8
k), 1,0 (T = B ‘{ { u(@,e)iv, | e ¥y, g (1re  a0at
T -ivlkl z(T-t)
T e ’
= =2%B4Vp e by, g (D) { e w (t)ae . {6.32)
We find also, taking (%) in the second form given in (6.27), that
T 2% . P 4
Coo(T) = 8 { £ u(8,t)¥y dBac = 2xB¥,, £ ugltiae . (6.33)
Since this must be true for all T and %E woo(t) = Coo(t), we have also
T
woolT) = 2By, [ (T - thuy(eiat (6.34)
0
2
Since u|k|'z (vlkl,l) ., (6.31), (6.32) become
v T iv (T-t)
[k}, 2+ T k), 2
e T TSR { e u (t)de
T iV (T-t)
- Ixl,2
'Ikl.lalkl,l(“lkl.t)({ e u, (t)dt (6.35)
v T =iv (T-t)
MLIFL S = J Ixl,2 (t)at . 6.36
R A I TR L T W A L { ° uy (6.

Taking account of the fact that

3¢ 3J
Ix],t - 1x1,2
e M T Mkl.e T Pk, e!
]
(6.24) and (6.23) yield
-36~
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va k.t Ixl, 2~ ar Ikl.2" g k ’
w g T =-iw (T~t)
Ikl,2 . k1,2 Ik, 2
o Tt T A T @) { e u (t)de .

On the other hand

Mp,0

Ir = Ay, olx!

go (6.23) gives

T
|k| + 1 -
o V0™ " A0 tj, u (t)ae .

Using the formula (6.18) and (6.28) for Alkl,l and Blkltl we have

Vikl.t o Vixl.e !r 1v|kl,l(1-t)u ‘o1t
L1318 k,L ¥ (u - k2)1/2 0 k
k1,2
ik, 2 ~xi.e T V), T8
T wk ’.(T) = = 3 17'2—I e \lk(t)dt
L “’lk',l ~ k ) 0
® T iw (T-t)
LIVE ST SRR A LT IO
L 1] x,L /70 k
(") _ T -iw (T~t)
At o m = e TR (hhae
ra k,2 70 k
The equations (6.39) become, in view of (6.17),
ATICIEY) G [ |
2 v D, (g - 216 w (e)ae .
i k,0 /v 0

This is valid, but meaningless, for k = 0. It is easy to see that in the case
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(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

k =0 we
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should use
T

Voo T) = [ vy (vrae . (6.45)
Ta 0

1

The equations (6.33) and (6.34) are left as they appear. We note that all of the

coefficients
v
1 V2
k!, 7 = 2kl 40, 248 (6.45)
/T (u - x5 N
Ixl,t

are bounded away from zero, uniformly with respect to k.

It is also possible to show, using the work [10]), [11]) of K. D. Graham, that the

numbers
% Ve, 1t ey, 10 Vikd, 20 Cikd, 20t Vikd L3t Cied Lyt

are separated by a gap at least equal to %/2 again uniformly with respect to k.
Applying the result (14] of A. E. Ingham along with the work of Duffin and Schaeffer (7],
much as in (12], (2), (3], we conclude the existence of functions uy(t) in tho,T], tor

any fixed T > 4, solving the above moment problemg, -« < k ¢ =, Moreover, the result of

Ingham implies as explained in [12], [26], that for each k

T
-2.2 2 2.2
e N < { lu (e)i%ae < c N
where
2 2
L 2|k|(|k( + 1)|vk'°(r)|

b4 + 2 b - 2
+ lz‘ NP LML 121 L L]

-« -
+ 2 2
+
+ l§1 Yxp, e, g (T 121 I L]

k= £1,#2,... « Por k = 0 we must add Icoo('r)l2 + |voo(r)lz- Since

T > 2 - T )
[ [ tue,e)®dae = § [ fu (e)l%ae (6.46)
¢ 0 k=== 0
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we see that the above moment problems, equivalent to the control problem, can be solved

with (6.46) finite, provided that

which is the same as saying that the norm of the final state in ﬁ should be finite. We
have, then, the exact controllability result that any ﬁ state may be controlled to any
other ﬁ state during a time interval of length T > 4 with the control configuration we
have described here. As discussed in connection with the wave equation in (PF}, [GG], one
cannot be sure that the state of the system remains in ﬁ for all t e {0,T]. However, in

the present case of the Maxwell equations one can show that these states do lie in

H = Hl,d(.)’

-39
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7. CONCLUDING REMARKS

The approximate controllability results of Section 5 would appear to be extendable to
domains other than rectangular ones but the precise method of extension remains to be
worked out. We will indicate some aspects of this problem which are clear from our current
work.

First of all, the result of Section 5 is almost trivially extended to the case where
control is exercised only on a subset {(v,y)l0 < a<y<b<x}, b>a, of

{(w,y)|0 € y < ¥}. The only change is that the interval 1 + 8§ ¢ t < T - 1 - § appearing
in (5.14) and subsequently must be modified to A + 8§ < £t < T - d - § where
a= tnt {sup {[(x-612+ (n-y?]Y3}.
acy<b 0<ECy
0<n<ix
It $(v,y,t) = gﬁ (¥,y,t) 20 for §<t<T-68, ac<y<b, the Holmgren theorem will
still apply to show that ¢(x,y,t) =0, (x,y) €R, 4d+8 <t <T-4a-4§. After that the
remainder of tha proof is the same: the same eigenfunctions and frequencies must be dealt
with, the functions sin jy, cos jy are still independent on a < y<b if b > a and
the conditions
;b(x,y) =0, (x,y)eB- {{x,y)la <y < D)

-~

avo
e (w,y) =0, a<y<b,

o A

>

still show vo(X.y) £0 in R.

AT

The first limitation of the method which we have used in Section 5 lies in its

dependence on the construction of ¢(x,y,t) as a linear combination of partial derivatives

of v and Ww. It is necessary to have a solution of the wave equation to which Holmgren's

theorem may be applied. This part of the proof can gtill be used for non-rectangular

domains as long as a portion of the boundary on which control is applied is a straight line

S

segment. Assuning the segment parallel to the y-axis, one can construct ¢ by the formula

¥

-

(5.8) again and show that ¢ and %% both vanish on the straight line segment in

question, allowing subsequent application of the Holmgren theorem to show ¢(x,y,t) = 0

-40~-
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for (x,y) € R and t in some interval d +8 < t < T ~-d -§, with d depending on the

geometry of R. But then we are faced with a second limitation.

The second limitation of the method which we have used lies in its reliance on the
specific form of the eigenfunctions and frequencies to pass from ¢(x,y,t) 2 0 to the
conclusion that both ;(x,y,c) and ;(x.y,t) are likewise identically zero. It needs to
be emphasized that no local analysis will suffice here. In the one dimensional case (see

our remarks at the end of Section 3) if the control problem is stated for boundary

conditions
v(0,t) = 0, gf (1,¢) = au(t) (7.1)
dw w
}; (o,t) = o0, H (1,t) = Bu(e) (7.2)

the ;. v constructed as in Section 4 will satisfy the wave equation and

v(0,e) = 0, -:-%' (1,6) = 0, (7.3)
& (olt) - ol a—w (1't) =0 ¢ (7-‘)
9% Ix
a a; (1,e) + 8 EE (1,t) = ¢(1,t) =0 (7.5)
T (08 ¢ B 5E (e = e, .

Here if we take v to be a non-zero solution of the wave equation satisfying (7.4) and
take

Vix,t) = ~

Rim

X o~
aw
{ 5¢ (E.t)aE

we clearly have v(0,t) = 0,

v 8 3w
— ("t) - _I — (ﬁ,t)dﬁ
13 L 3tz
1 2"" -~ ~
B 3w -8 (v - v -
-- ;g " (008 = 2 (3% (0,8) = 3= (1,8)) =0,
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% 8 3w
——— (x‘g) - e - ! —— (;,t)dz
ae? o aed )
I~ 2~ 2~
8 !x 3w B 3w v
- - (E,t)QE » - = {x,t) = —= (x,t)
Lo 3t3£2 @ Jtox axz

g0 that V satisfies the wave equation and, clearly, (7.5) is also satigfied. Thus the
wave equation with (7.1), (7.2) is not approximately controllable; ¢(x,t) &

a g-,!‘ (x,t) + 8 g‘—; (x,£) 2 0 but this does not imply that Vv or w are identically equal
to zero. The additional condition which makes this work in (3.7) ff. is the fact that one
can show there that ~ -

a3 (0,00 + 8 3% (0,00 = 0.

It seems likely that the question of whether or not ¢ = 0 implies that both ; and :h
equivalently v and ¥, are both zero must eventually reduce to a boundary value problem
of an as yet unidentified type.

At the present writing there is only one, rather curious, result which we can offer
which yields approximate controllability for & domain R of rather general shape. We
suppose that the “control boundary” B, B = 3R includes two nonparallel line segments, .

l, and 22, with unit exterior normals vy and Vye Proceeding as before we can show,

applying the Holmgren theorem together with

v
* 0 on Lyr 2,
4 ':"":"' 9, 4i=1,2 on 11, !.2. respectively,
t 1
% - .
] cav‘_siv_o i=1,2 on L,, &, respectivel
!.‘ T\): E ’ ¢ 1’ *2 % > £
&f that both
1. v v
‘1 .1-QET;"-5-E' {7.6)
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> " (7.7)
must vanish identically in R for 4+ 6 <t < T -d-8, §>0 arbitrary, d > 0
depending on the geometry of R and B, the location of 11 and lz within B, etc.
But then both ¢1 and 02 must vanish on 21 (say) for these values of t. Subtracting
(7.6) from (7.7) we see that

a(av 3;

v " 3;;) =0 on l1 x [d+6§, T-4-28§)

-

This shows, since 21 and 12 are not parallel, that a nontangential derivative of V

vanishes on £, x [d + §, T-a-28]. Combining this with %% =0 on t, and applying

the Holmgren theorem to ; alone, much as in (5], [13], we are able to conclude ; =0,
provided T is appropriately large. Then one easily has the same result for ; and
approximate controllability follows.

This result gives approximate controllability for R equal to the interior of any
Cclosed polyhedron in R? with control on at least two sides.

Further inspection of “his arqument shows that only l2 needs to be assumed to be a
line segment. That is needed in order to identify 02 as a solution of the wave
equation. We may then take 11 to be any smooth portion of By which is never parallel
to ;1 and achieve the same result.

Finally, let us indicate that we are very much aware of the limitations, from the
point of view of actual implementation, of the control configquration discussed in this
paper. In principle, at least, the boundary conditions (1.7), (1.8), along with the

further “"single layer" condition discussed in connection with Figure 3.1, could be achieved

with conducting bars attached to terminals as shown in Figure 1.
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Figure 3. Conducting Bar and Busses -

The perfectly conducting busses perpendicular to the boundary of £ ensure that the normal
component of i: ‘v' is zero just outside Q, provided that no net change is allowed to
accumulate at the boundary of @, 4i.e., in the conducting bar. Thus the potentials at

€ and D wmust be regulated so that the potential difference C - D ensures the correct
controlling current through the surface bar B while C + D {s set so that there is no
accumulation of charge at the bounding surface.

We have not considered any effects of propagation delays in the controlling circuits -
i.e., wve have not assumed that these are distributed parameter systems. This assumption,
and evident limitations on the speed with which prescribed currents can be computed and
established i{n the controlling circuits together with gensing limitations, place admittedly
severe limitations on what can be done "open loop”. It is likely that the eventual
significance of our results will be most evident in connection with closed loop behavior
wherein time varying magnetic fields A near the boundary of £ induce cu}rents in the
bars B which, being resistive, will then act as energy dissipators. We hope to discuss

this topic in later work.
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Another control configuration may be obtained by supposing the boundary of 1 to be a
perfectly conducting sheet of material to which electromagnets are attached in a dense

array as shown in Figure 4.

Figure 4. Electromagnet Array

If J denotes the current through the windings of the electromagnets, then we shall have
>
E._ =0
T
and
Hv = aJ
where a is dependent on the electromagnet's configuration. The theory in this case will

take much the same form as the one discussed in this paper.
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Abstract
We present here a class of realizations {Yp} of the dual space &' for
the Paley-Wiener (Hilbert) space ¢ of entire functions. The elements of each
space Yp are meromorphic functions with poles at the zeros, 2z, k € K, of
a certaln "cardinal function™ p. The relationships between ¢ and Yp are
explored and applications are made to the study of nonharmonic Fourier series
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whose terms are complex exponentials e K .
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1. Introduction and Statement of Principal Results.

ﬁﬁ;.\vk'f"

[
b 4 '

It is well known that certain families of entire functions may be given a

jnj Hilbert space structure. (See, in particular, the extensive work [A] of }
w ‘
g de Branges in this connection.) The most familiar of these spaces is the

X

10 so—-called "Paley-Wiener space”, which we here designate as ¢. It consists of

entire functions ¢(z) = ¢(&+in) with the following properties: For each

w'
4L

Eé% $cd
z(ﬁ (1) there exists a positive nuamber, H’. such that
s 4
,i;j Jo(x) | < M¢e" E', z = E+in € L3 (1.1)
_Eig (11) there exists a positive number, N., such that for every real E
o J=] #Ce+in) | Zdn < “0’2" el (1.2)
. -
;ﬁ& An inner product and norm for this space are described in [A] and that norm is
§§3 equivalent to the norms which we will introduce at the beginning of Section 2.
= One of the purposes of this article is to introduce a space (actually, a
::ks class of spaces), Y, of analytic functions ¢ = y(z) having singularities
;égs confined to a vertical strip in the-complex plane [ , and serving as a
;‘E§ natural representation of ¢', the dual space to ¢. The main interest centers
'gﬁﬁ on ¥ € ¥ which are meromorphic with poles confined to such a strip. The rela-
22;; tionship between ¢ and ¥ 1is somewhat similar to the duality relationship
is: between paired Hﬁ spaces. If we define the left and right Hardy spaces G:
Ca

and H, to consist of functions g(z), h(z), analytic in Re(z) < a,

¥
XX
X 7

« ¢
%

Re(z) > a, respectively, bounded in sets Re(z) < a-&, Re(z) > a~€, respec—

S
A

tively, and satisfying uniform L2 bounds

A
Ny
’. ‘.

.
hy
.2,
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- 2
JZ| s(&+in) | “an < B, £ <a,

17 n(erin | 24n < C

h? £E> a,

then (see, e.g., [B]) g and h have L2 traces on the line Re(z) = £ = a

and the duality relationship

dg,h> = l: g(a+in)h(arin)dn
may be used to define all linear functionals on Gg or Hi, each of these
spaces being a natural representation of the dual space of the other. We will
have more to say about this in Section 3.

Just as in the case of the Paley-Wiener space and the other, related, spa-
ces described by de Branges, the spaces Y which we introduce as dual spaces to
® are intimately connected with certain entire functions p(z) which "just
fatl™ to lie in 9; p does not belong to & but if z is one of the zeros of
p, p(z)/(z-z) does belong to ¢&. We call such a function a cardinal function.
The precise definition of a cardinal function operative in this paper 1is the
following: an entire function of order 1 and type w, p(z), 1s a (regular)
cardinal function if there exist M+, M, a, all positive, such that, for all
z = EHn,

| pCe+tn) | < M'e K (1.3)
and

| pCettn) | > Me K . | e} > (1.8)
1f p 1s a cardinal function, the space of meromorphic functions
Y- {v] ¥(2) = ¢(z)/p(z), ¢ € ¢}
is shown to be a natural representation of the dual space ¢'. With Z, being

the set of zeros of p, one sees that the meromorphic functions ¢ € Y, have

P

partial fraction decompositions analogous to
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y(z) = —
zeZ z=%

(with suitable modifications in the case of multiple zeros) which are related,

in much the same manner as described by Schwartz in [C], to exponential bases

z, t
Ep = {e kl

for the space Lz[—l,w]. We are able in this way, to describe certain Riesz

z € Zp}

bases and "uniform decomposgsitions™ of Lz[-n,w], using properties of p
somewhat different from the assumptions on the growth and spacing of its zeros
appearing in the classical work of Paley and Wiener [D], Levinsoan [E] and

Schwartz [C], or in more recent treatments, such as Duffin and Schaeffer [F]

and Young [G].
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2. ¢ and Y as Spaces of Fourier and Laplace Transforms.

The linear vector space, ¢, of entire functions satisfying (l.1) and

e

(1.2) coincides, as is well known, with the set of Fourier transforms

L
#(z) = | e2tf(t)dt = (FE)(2) (2.1)
-n

2 g0 9 2 o
Fopt i Y Y

corresponding to functions f € Lz[-w,n]. The inverse relationship is

# 1 EHA g 1
4 f = l.d.me5— d = » 2'2
(0 = Limgey | e 2 T (2.2)

i s
g’ 43

the integration taking place over the straight line segment joining the two

-

integration limits. The Plancherel formula

2 1 1

,l%}. "

2
o e R B IR LI CER)

\ shows that (2.1) and (2.2) are each positive scalar wultiples of an isometry on
\é Lz(—w,ﬂ), the notation ¢(i¢) 1indicating the restriction of ¢ to the imagi-
§1 nary axis. From

\

A
jf L +Hn)t
$(E+in) = | (5N f(t)dt
: it is easy to see that for each real £
Al
N e 271 &) ey 2, < J7) e(e+tn) | Zan

< L(-=,2)  ‘w (2.3)

: 2n | £ 2
- <e LICEDL Iy PR
3 from which 1t follows that each of the norms | Ip defined by
,~'

3,

x 190 2 = 1%C] ateriny | 2 4] ac-prin) | Bran

- p v

iy 2 - 2

‘v - jrp' *(z) | | dzl 11 LZ(rp) ’

@

{& Pp being the contour consisting of Re z = p, oriented upwards, and

L

4; Re z = -p, oriented downwards, is equivalent to l¢(1-)le(_’ )" Much of our
5 ' T
¥

1
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work depends upon being able to vary at will the particular value of p being
ugsing for | l,, secure in the knowledge that the resultant topology remains
invariant.

Let Y denote a certain family of functions ¢(z) analytie inl Re(z)l > a
for some a > 0 which may depend on ¢. With T, as already defined, o > a,
we specify Y precisely as consisting of such functions ¢ for which the iden-

tity

¥Wz) = 5op er"’gfg a, |re(z)| >0, (2.4)

is satisfied, and, also for every p > f§ > a

Jr|1»(z)|2|dz|<n6. (2.5)
where Np 18 2 positive numbe: depending on f$. It is quite straightforward to
see that a gsufficient condition for a function 1, satisfying the second con-
dition, (2.5), to also satisfy the first condition, (2.4), 1is thatl w(z)|

should be bounded in | Re(z)l > p for every p > a and, again for every

p > a,
lim J ﬂ%%%ﬁi = lim | !é%%%i =0,
« > @
i ct,p r Ct,‘p

where Cr,p, cr,-p are, respectively, the right anid left hand semicircles of

radius r centered at the points 2z = p, 2z = —-p, respectively.

Proposition 1.1. Corresponding to each ¢ (and associated a) in ¥ there is

a unique function g € L2, (-=,»), p > a, where

(== = (g ¢ L = | [0 c2elel gy 2ae <o), 2e6)

and ¢ = g, the "two-sided " Laplace transform of g, 1in the sense that
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¥(z) = (£8)(z) = j; e %%g(t)de, Re(z) > a, (2.7)

0 -zt
= -J_e g(t)dt, Re(z) < -a. (2.8)

Moreover, for each g € sz (-=,»), Y(z) = (£g)(z) € ¥.

Proof. This is quite standard, so we will be brief. Symmetry allows us to
consider only the t > 0 part of (2.6) and the first identity (2.7). Given
veY wedefine g ¢ Lg[o,o) by use of the Laplace inversion formula on the
line Re(z) = p, p > a, and application of the Plancherel Theorem. On the
other hand, if g € L§[0,°) and we define (z) = (£g)(z) by (2.7) for

Re(z) > a, application of the Plancherel Theorem again establishes (2.5), inso-
far as the portion Pg = {zl Re(z) = p} 18 concerned, for p > a. For

p >8> a, application of (2.7) readily shows that

1 -ft -
¥W(z) | S sz le "~ g(O)! » Re(z) > p. (2.9)
l I Re(z)-P L2 [0,=)

Let rr,p denote the positively oriented D-shaped contour consisting of Cr,p>»
as defined earlier, and {zl Re(z) = p,| Im(z)l < r}. If Re(w) > p, then

for sufficiently large r

.
w=z

v = oo Jp Wade (2.10)
r,

Por z = p + rel®, —x/2 < 0 < x/2,

1 1 1
Re(z) - P  Re(z) - p+ (pP) ~ T cos 6 + (p-B)

is bounded and tends uniformly to zero as r+= each sector

-%/2 + 8§ <0 < x/2 -8, §>0. Using (+) together with the fact that

-1 -
l w—zl = O(r 1) uniformly on Ce,p a8 r -' z-p' tends to =, the integral

over c,,p is geen to vanish as r+~ and (2.4) follows from (2.10), the
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convergence of the integral in (2.4) again guaranteed by the Plancherel Theoren.
The proof for Re(w) { ~a 1s almost word for word the same so we will regard
the proposition as proved.

For g ¢ Lg[o,w), p > a, the usual Laplace inversion formula shows that

1 Jp+iA
2ni p-1A

For t < 0 a standard argument shows that the integral vanishes. For

g(t) = 1l.i.m. eth(z)dz.
A+

g € L2(-~,0] we have, for =-p < -a,

p+iA

-1A
and the integral vanishes for t > 0. Thus, letting

1

(t) o 1-1. e Jo1T - zt )d .
& A-nnm 2ni '1‘9 e ¥(z)dz

Toa=Tp N {z| |m(z)] < A} (2.11)
we may write
1 zt
g(t) = l.lm. 55 e $(z)dz. (2-12)
Abon 271 er,A

Let p be a cardinal function as defined in Section 1. We define Yp to
be the gubspace of ¥ consisting of functions ¢ such that
$(z) = p(z)¥(z) (2.13)

is an entire function and the identity

1
ORE - 313 ) 4c

is valid for all =z in the open strip interior to Ty, p > a as defined for
P in (104).
The results which we present next concern the structure of Y, as it rela-

tes to ¢ and the cardinal function p.

Theorem 2.2. Let ¢ € &, let p be a cardinal function, and let a be as

specified in (1.4). Define

S N T T N S A T Py *.'_\4
<+ T RN, TR GO, AR ST,
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(e re)(z) = #(2)/p(2) = W2)- (2.15)
Then V¢ € YPC:Y and for every p > a there is a positive P such that
2 2 2
jrp' ¥(z) | | dz| < uoter . (2.16)

Proof. Let p > a and let | Re(z)l > p. Looking at Re(z) > p first, we
have
1 | 1€4
¥(z) = 2ni jP z-c) dg,

14

where Tp , 1s defined as in the proof of Proposition 1l.1. Let ¢(z) = ( £f)(z)

as in (2.1). Then with 2z = E+in

2 r2Et 2
' ¢(Z)I < i" e dt 1f1 Lz[_""]

1 2n§ -2n§ 2
-—z—E(e - e ) 1£1 LZ[-”“]

so that
| o) | < B, sl | gH?,
with Mg depending only on ¢, not =z. Using this with property (1.4) of p

and applying the Jordan lemma we see that

1im ]C !&Sl dz =0
z-
r+= r,p

so that

1 ¥(2)
ORE Jr: e e

For Re(z) > p > a the corresponding integral over T,, the left hand portion

of T,, oriented downward, vanishes and thus

1
¥(z) = 57 ]rp %-(-—:‘)‘ g . (2.17)

A similar argument shows that (2.17) also applies for Re(z) < -p < -a. Hence

condition (2.4) for ¢ to be a member of ¥ {is satisfied. Condition (2.5)

PRI L T - - PP S S I L L S o L SR g P LA I Y L S AR SRS TS 1
NI AT RN, SN IIRR, NR AN RYSIAIAN : e N AN S A R et o]
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follows immediately from (1.2) and (l1.4). Since p(z)y(z) = ¢(z) 18 entire,

( )

...'
u‘.‘
’Q
-
-

)
.

2 be the positively oriented rectangle with corners #p*iA. For 2z Interior to

there remains only the proof of (2.14) to show that ¢ ¢ ¥Yp. Define Rp A to

Rp,A  we clearly have

%

- ¢2) =51l =29 (2.18)
;' p,A

. From the bound (1.1) we have

..I

)

; (%) Mye™

W) T-z AIn(z) * © = THA P ST <o

s

:: and a similar bound holds for g = r-iA. Hence, letting A+=, (2.18) Becomes
o

NN -l )

-‘::;. $(z) T JI‘ -z dz , (2.19)
AN g

by vhich corresponds to (2.14). We conclude ¢ € ¥, and the proof is complete.
‘,:, The next theorem is a complementary result to Theorem 2.2. 1Its proof is
oY

-ﬁ}: only slightly more difficult.

.

Theorem 2.3. Let ¢ € Yp and let

o #(2) = p(2)¥(z) = (B¥)(2). (2.20)

Tl
ati Then ¢ € 9.
o

. Proof. Let a be as specified for ¢ preceding (2.4). For l Re(z)l >

&3 B8>p>a, (2.4) and (2.5) combine, using the Schwartz inequality, to show
AN

:"ﬂ' that for some Bg > O
NN
— | ¥(z) | < B,.

o P
@jﬁ Since this is true for every § > a, using (2.20) with property (1.3) of p we

have

A A A A A N S S A S A Y G
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..............

el ;- ehn | €f> 8> & = Max(a,a), (2.21)

| oz | < Mge
a specified for p as in (1.4). Then using (2.5) with property (1.3) of »p

we have

2,2 xsp3>a. (2.22)

2 +
Jp_b o | %] dz| < ny)
P
The inequalities (2.21) and (2.22) establish (1.1) and (1.2) for l Re(z)l
'I El > # > a. There remains the question of the behavior of ¢(z) inside a
strip | Re(z)l P, £>P 41in order to complete the proof.
Let the right and left halves of Tos oriented upwards and downwards

+ -
respectively, be denoted by T4 I5, respectively. Define

pr

#t2) = 5hr Jr; %éfl-dc, Re(z) < b, (2.23)
@) =g It $E az,  Rez) <5 - (2.24)
Since ¢ € Lz(Pp’);, we have -
7 (z) = " g(r)ar, JeXt| (e | %t < o, (2.25)
0 0
and
2] eany | Pan = 26]% s | 2at < = . (2.26)
Similarly
o*(z) = JO e %tn(eyae, O 20|t | n(e) | 2 e < =, (2.27)
and
J:' ¢+(1n)| 2 dn = 2n ]2' h(t)l 2 dt ¢ =, (2.28)

Conditfon (2.4) for ¢ to be a member of ¥Yp implies that

$(in) = ¢H(in) + ¢~(in), -~ {n <™, (2.29)

................

.
et m e
Iy
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\-: From (2.26) and (2.28) we conclude that there is a function f ¢ LZ(-«»,m)
<
_{3}: such that
.‘f.',
-
1o, A -int
. o(in) = l.i.m. ™ e "o(in)dn. (2.30)
o Aso A
‘.\.'
::}3 and
A -1
‘ T oase A
XV From the identity (2.29) and (2.23), (2.24) we conclude easily (since $ €
)
~
" {i Lzrp) that | ¢(z)| is uniformly bounded in the closed strip |Re(z)| = |E|< 6.
o
Yy Let C, be the closed contour, positively oriented, consisting of the imaginary
34
-; axis from -1A to 1A and the right half of the circle | zl = A. Define
N
~{a + 1 -zt ¢(z)
o A J1)A e 1 4%
i Letting A+=, using the bounds (2.21) and (2.22) for ¢ and the Jordan lemma,
i-\'-
o we conclude
"':::: 1 -int ¢(in)
L WO =l a4
o is identically equal to zero for t > wm. But the relationship of the Laplace
o
::.:-: transform to coanvolution shows that
o
-, - - -
= w(t) = j;e (t-9) ¢ (s)ds
il’ and hence that
E (:'; .
.:'_‘-l;’ 0 =2 w'(t) = w(t) = £(t) a.e., t>w
'.r:.'
= 2 Thus we conclude that f(t) =0 a.e., t > n. A similar argument shows
::E:::E f(t) = 0 a.e., t < -m and we have, ferom (2.30) and the identity theorem,
i'.:ﬁi #(z) = J" et f(r)de, f e Lz[—ﬂ,ﬂ],
AN -
or valid for all complex z. Hence ¢ € & and the theorem is proved. For ¢ ¢ ¥
._\,
:_:: we define, for p > a (cf. (2.3)),
::‘::
¢ o
f.a"
_std
L T S R R T T W -'.q'.- B N O L TP L e L
Y e q'-l..\_.lj.l‘"‘:'l_m'a}l:';_ S VI A '.p\i
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. 2 2

- Wt = f. | w@ | %) dz ] . (2.31)
- P

t.. p

- Then it is clear that the map P defined by (2.20) maps ¥, onto ¢. Its

_ inverse on ¢, P‘l, is defined by (2.15). It 1s clear that both P and p-l
e

:i are bounded with respect to I¢lp in & and Iyl 1in ¥p. Since ¢ admits
-,

4

:; a Hilbert space structure, it follows that Wp does as well.

“~
{ One of the most important results of this paper has to do with the rela-
::; tionship between 1 i, on Yp and another norm on the same space, which we
¢

':: refer to as 1 3. The definition of & 1p depends on the following result.
-~

e
43. Theorem 2.4. Let ¢ € &, p € ¥, and let f ¢ L[vn,n], g € Lp (~=,»),

byt -

A p > a, be such that ¢ = Ff, ¢ =fg (cf. (2.1), (2.7), (2.8)). Then with
: .
‘ <$,¥> = 271 jrp $(z)v(z)dz,

.

) <¢,9> 1s independent of p for p > f§ > a and we have

.n‘ —— e e e et e e ——raee — e

R "

<6,9> = | £(t)g(r)de. (2.33)
~ Proof. The formal argument is very simple:

"

N 0> = i [ MD)Wz = i | [TeZtf(t)dry(z)dz
r ’ 2x1i r 2ni ‘T <+«

+' P p

. = [T E(0) oy Jp e*SW(2)dz de = [T £(t)g(n)dt, (2.34)
~3 - P =

}ﬁ the last identity following from (2.12). To make this argument rigorous one may
-4
& define (cf. (2.11))

» 1 zt
K 3 gA(t) iy j[' e v(z)dz
D 0,A

‘Q and one immediately has

2

4 " .
- Iy £(0)g,(E)de = 5= [ 6(2)$(2)dz.

L p,A

"

l"

¥

q

"

-

-~ A, L ] -« o™ ~ R ) LAY RPN - L ~ o’ e W . - ~ - -~ : ‘e - e, - e = e T s .
N e e \'\.\\_\.\.\,\.._... ,‘. Y .‘\-,,._x,\ RS RS T e T T N T .
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Since it 18 well known that gy converges to g in the L norm on [—n,n]
and ¢(z)¢¥(z) € Ll(rp), the desired identity follows immediately. Since the
right hand side of (2.33) 1is independent of p, the same is true of the right
e hand side of (2.32), which is well defined for all p > a, a as defined for
:i ¥ preceding (2.4). We define a semi-norm on Y by
<
e $ed 0
N $#0
* -
e where
L
oA
100% = [7f etan) | %] an|
: 0 eo
o4
A i8 equivalent to any of the norms | | p on &, p > 0. Since the Plancherel
}:; Theorem gives
:j 1
91 = 179 1 = V2x \f1
\ ¢ 0 2w ¢ Lz[—ﬂ,n] ¥ Lz[-w,n]
o and (2.33) obtains, we see that
IS
.r.:.' "
S L, £(e)g(r)de
' iy, = T ]
/2x  fel?[-n,n] L2[-n,n]
o 1£1#0
o
,::, = gl (2035)
2 o ]
.
Thus Iylyg = 0 1if g(t) = 0 a.e. 1in [-!,w]. Also, since the Plancherel
jl:: Theorem gives
o 2 = 20t 2 0 2ot 2
v 11°= 2w [Te PT| g(r) | “ae + |7 %P g(e) | “ar)
L v 0 —®
’;L it is clear that
«":;‘
Ny 2 _ 1 =« 2 27p 2
i Wity = 5 iﬂ'g(t)l dt < e LID (2.36)
\;; A principal result of the next section will be to show that, restricted to Y¥,,
o
I 1y 18 a norm and an inequality in the reverse direction of (2.36) may be
-
Ib obtained. We make a start in this direction with

ks W c e " _""' - . e
' " \mm'.lh}.t LAY .L‘J_J.L\AJ_ Ty .a}‘n AR
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Theorem 2.5. If v ¢ 'p then

[] 4= 0 == ¥(2) = 0.
Then 1 13 1is a norm on ?p.
Proof. If | t' ¢ =0 then for p > a.
]r 8(z)8(z)dz = 0, v e 4. (2.37)
p
Since Theorem 1.3 ghows that for some ¢ € ¢
¥(z) = ¢(z)/p(2), (2.38)
(2.37) becomes
0(z) -
er (2) $(z)dz = 0, 9 € @. (2.39)

Theorem 2.3 also shows that as 6(z) runs through ¢, 8(z)/p(z) covers all of
YP.
Let C be a closed contour in the complex plane not meeting any zero of

p(z). Then with q(z) an arbitrary polynomial in =z,

-1 1 q(%)
"’c(z) Tt JC T P(C) dg,

defined for 2z exterior to C, 1is a rational function of 2z which belongs to

Yp and consequently has the form 6(z)/p(z) as ia (2.39). For another con-
tour C, Jjust outside C and enclosing exactly the same zeros of p(z),

(2.39) 1is readily seen to imply

0 = Jo #2)¥y(2)dz = [o o7 ! 2 ¥ a2

- e L $2) 4, 4z = | qCr) EEL 4
C

c p(Z) 2xi ‘G z-% p(%)
Since this is true for every such C and every polynomial q we conclude that

¢(z)/p(z) 1s entire. But since ¢(z)/p(z) 1lies in YPC:Y, (2.4) shows that

for p > a
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) $(z) _ 1 1L (%)
o p(z) 2ui jr z-¢  p(g) dz-
-.j,' o]
:"} The fact that ¢(z)/p(z) then shows that ¢(z)/p(z) = 0 for =z outside the
closed strip bounded by I‘p and thus, by the identity theorem,
o ¥(z) = ¢(2)/p(z) = 0,
L :3 proving the theorem.
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’ 3. The Internal and External Spaces.
o
ii As previously, let Pp denote the contour consisting of the two lines
TRy

Re(A) = p, Re(A) = -p, positively oriented, and let the two halves of Pp be
;5 denoted Ty, Iy. The following theorem is well known ([H],[I]).
o
3\
-0 Theorem 3.1. Let hy = hy(pHlo) ¢ Lz(rp). Then there are uniquely defined
functions hy(z), h;(z) defined and analytic in Re(z) > p, Re(z) < p, and

:; lying in the Hardy spaces H2{Re(z) > p}, HZ{Re(z) < p}, respectively, with

:

eV oundary values in ,» such that

2y boundary values in L2(T)) h th
P
= + -
n:; h+(p+io) h+(p+1o) + h+(p+io).
e Moreover
“ 2 +.2 -2
- Ih+l 2crty T Ih+l r+t Ih+l r+ (3.1)
}: P P p

*f While we do not offer a formal proof, it may not hurt to remind the reader
R that

: h, (g)dg

‘ + 1 +
v M =T I e R >, (3.2)

>

N ey

2 g

h(z) = 5ir Jrx RLOIE | pe(z) <o, (3.3)

‘f the orientation of P; being upward in both cases. Moreover, there is a unique
2
5 function g; satisfying
xa
@ -2pt 2
1 J e | g+(t)| dt € =,
. - 00
:::: such that h.'.(Z) - (38)(-2)) Re(z) = p, {i.e.,
v:,.
- - -
:4 h+(pi+a) = 1l.i.m. ]A e 1°te pt g+(t)dt .
4 A» -
o A —(p+o)t
::.: - lcilmo ! e p 0 8+(t)dt-
) Ao -
!
.'4
A
;.-
X e |
N A S I S S ST TG R SRR Ry S S A Nt LR 6 Y L N !
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+ -
while h4(z), -h4(z) are the right and left Laplace transforms of g4:

hi(z) = L.tm. [ S

Adro

g, (t)dt, Re(z) >

hy(z) = l.i.n. ji e*" g (t)dr, Re(z) <o -

Ave "

In the same way, 1f h_ = h_(-pHoo) € L2(rp) we may decompose h. as

h_(-p+La) = h'(-p+ic) + h_ (~p+la)

where hi. hZ 1lie in the Hardy spaces H2{Re(z) > p}, HZ{Re(z) > -p}, respec—

tively, and
+ 1 h_(Z)
h (z) = rrry ]r; -—E_T' dg, Re(z) > -p, (3.4)
_ 1 h_(%)
h_(z) = 3.7 jr; — dg, Re(z) < -p, (3.5)
2 + .2 -2
ih_t LZ(P;) = Ih_ I + Ih_lr; . (3.6)

Now let h ¢ LZ(Pp) and let hy, h_ be its restrictions to r;, Tp,

respectively. Define

R(z) = hi(2) + b (2), |Re(2)| < o, (3.7)

and we have, from (3.3) and (3.4),

1 J h(z)
2ni Pp -z

h(z) = dc. (3.8)

We will refer to h as the "internal part of h relative to Pp'. (If h f{s

defined originally on a set which includes I, for various values of p 1t is

necessary to refer to the particular T, 1in question. If Pp is understood,

we will simply refer to h as the "internal” part of h.) We will write (3.8)

as
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O
and designate

~2 ~ ~
BAr)) = (| b e L3 )= Takr )
p p p
as the "internal Hardy space” (relative to rp). We define

;(z)

By(2) - b(z), Re(2) > o,

h(z) = h_(z) - h(z), Re(z) < op,

and we have, for | Re(z)|> p

h(Z)

° 1
h(z) = 577 jrp P dg, (3.9)

as may be readily verified. We write (3.9) as
h = Th
and refer to h as the external part of h (relative to rp). The space
~2 - 2 A2
I' )= h r - r
BT = (| h e L5(r )} = LT )))

is designated as the “external Hardy space™ (relative to rp). It i8 clear that

Bz) + h(z) =h(z), zeT (3.10)
so that P

T+T=1.
It is easy to see that T and T are both projections, onto Ez(rp), ﬁz(r,),

respectively, but that they are not mutually orthogonal. Using the properties

of the Hardy spaces one may see that

Yy

bt (ry) ¢y L2(rh)

“;‘.

+ +
th_1 Lz(l":) < Ih_t Lz(l';)

TAKL

VR AAA A

XA

Wy
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St

g X and from this we have, using (3.1), (3.6)
3

SR ~

+ -
ihi LZ(PD) < Ih1 Lz(rp) + |h+| Lz(rp)

< 2(m1 2er-y S My 1.2(1~+)) <24 oy (31D
1R P [+ P
3 .

3355 + -
:Lﬁﬁ‘ thi LZ(PD) < Ih+| Lz(P;) + Ih+l LZ(P:)

v + I LZ(I‘;) < 1nt Lz(l‘;)

+ + - -
< 1h '} < 1 ¥+ hi -+ th 1
) + 1.2(1';) h_t x.2(rp) h 2oyt 2(rh)

2k < /2(n, 1 < 2 1ht -(3.12)

‘ 2 + tht o2 ) 2
%a + L(I'“"’) + L(l‘p) L&(r ) )

-] On the other hand (3.10) gives
+ Ihi

sy thi Lz(rp) < ftht LZ(I‘p) (3.13)

LX(r ) -
! ( p)
:KS A final point 1in our elucidation of the properties of ﬂ2(rp) and HZ(Fp) is
\zés this: 1if h e L2(rp) and E, h are its internal and external parts,

LEA! then IEILZ(PG) and 'h'LZ(r,) can each be uniformly bounded in terms of
ifgﬁ' thi - ,», provided 0 < o < p < 1. Such a result is easily obtained using
0 L4(Tp)

SR arguments of much the same type as those used above.

2

Our next task is to identify the Hilbert spaces ¢ and Y with subspaces

.
RS

- G._ .., “. l‘.

-
[/

XA

of ﬁz(rp)) ﬁz(rp), respectively.

A
ek

Proposition 3.2: Let ¢ € @, so that ¢' rp € L2(rp). Then % = ¢ so that

#f

. 7
LN ol W

o|r, = Top, € T(L2(T,)) = HE(Tp).

l‘ N
-..'-} ‘.4- h ]

NN

Proof. This follows from (3.8) and the fact that (2.14) 1s valid for all

¢ €.
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Proposition 3.3. Let ¥ €Y, so that | T, € L(T,) for p >a (cf. (2.5)).

Then ¢ ¥ sothat ¥|p =T¥|r &T(LA(T,)) = BA(Tp).

A

Proof. This follows from (3.9) and the fact that (2.4) is valid for all ¢ ¢ ¥.

» We see then that for each cardinal function p, the map P defined by

ped

i: (2.20), and its inverse, P-l, are external + internal and

<

s .
X internal + external maps, respectively, defined on LZ(Pp). |
f The following theorem is the basic result concerning "interpolation™ of a

- ~

N function f € Hz(Pp) by a function ¢ € & on the zero set, Zp, of a cardinal :
B |

function p.

.,

Al

,: Theorem 3.4. Let p Eg_g_cardinal function and let p > a (cf. (1.4)). Let

. h e ﬁz(rp); thus h may be extended into Int(rp) via

N -l h(g)

:: h(Z) 201 Jr -z dc. (3014)

. P

N Then there is a unique ¢ € & such that (¢ - £)/p 1is holomorphic in Int(Pp).

\

Moreover, there is a positive K, independent of h, such that

4

(

» | o1, <K|h|L2(rp). (3.15)

N Remarks. The term “extended” has a technical sense here because h| To is the

] limit {n the Lz-norm, of hl Tps P <p, as p + p.

~3 The term "interpolation on Z," 1is used advisedly since for each zero A

4

: of p, of multiplicity u, ¢(2), ¢$'(A),*+, $¥~1(A) must agree with h(1),
e h'(A),*++,hi"1(2), respectively.
§ Proof of Theorem 3.4. The uniqueness is quite straightforward. If ¢, ¢»

LN
? were two such functions in ¢, we would have

:!

o

~
1
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P P P
on the one hand in Yp by Theorem 2.2, and, on the other, holomorphic in

Int(Pp). The formula (2.4), valid for Y € ¥ and =z external to Pp glves

n@-0 a A
p(z) 20l ' T (z0)p(0) ¢ -

The properties of ¢ € ¢ and p, together with the holomorphicity of (¢1-¢2)/p
in Int(rp), show that the integral converges and coanverges to zero. Thus
$,(2) = 9,(2), |Re(2)|>p
and extends, using the identity theorem, to all z.
For the existence, we let Ty be a contour similar to [, but with
a< o< p. For | Re(z)l > 0 we define

1 h(g)dg _ ~ch
¥ = 51 Ir_moeo - 16

(3.16)
The integral is convergent; p 1s bounded below on o and the square integra-
bility of h on Ty 138 a consequence of its membership in ﬁ2(r°). Then,
still for | Re(z)|> o, we define

h(r)dzg

1
¢(z) - P(z)ﬂz) - P(z) Z—ﬂI Jro (Z-C)P(C) . (3'17)
Then we define ;(w), | Re(w)' < p, 1in agreement with (2.14), by
T =5 ), :f:) dz = T(4). (3.18)
p

From (3.16), ¢ € ﬁZ(PG), 80 ¢ E Lz(Pp). From the properties of p, ¢, defi-
ned by (3.17), 1s in L%(T,) and then ¢ € B2(T,).

Let w satisfy o <| Re(w)l < p. Then

G o0 " q.'v \- ~o. - ..I,. - - ™ -"1..-.,; - T e ;-.‘ -;. --_'- - RIS '._..\'.\ ~ ._'..‘. S I UL LN
M - * . . 2 3 N 3 3
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5

.‘ ;(w) - _1___1 $(z) dz = —L | p(z) J h(z)dzg dz

.é 2ni Pp z-w 4"2 Fp z~w Fo (z-g)p(L)

<.

- = h(Z) p(2) p(z)

N = — G - dz d

R o IR ==l

i - 1 h(g)dg 1 h(z)

3 P(W) 337 /ra Ce0)p(0)  Zni Jrc w9 (3.19)
\

A - -

: Since h € HZ(Pp), we have also h ¢ HZ(PO). Since w 1is exterior to T[4

» 1 h(Z) -

y 2ni jI‘ w-T dz 0

<. g

o and we therefore have, from (3.19),

ol

~

' ) = 1 )

| $(w) = p(w) 5o Jro =0p(D) $(w).

..‘

- It follows that ¢(w) provides an analytic continuation of ¢, as defined by
2

s (3.17), 1into the region , Re(z)l < p. Thus ¢ 1is entire. That ¢ € & wmay be
\’ deduced from ¢(z) = ;(z), ¢ € ﬁz(rp), | Re(z), < p, together with

e

i $(z) = p(2)¥(z), I Re(z)' > 6. In particular, (2.14) follows from (3.18) as
N soon as ¢ = ¢§ has been established.

% There may be some question about the change of the order of integration in
e (3.19). Let Pp’A be defined as in (2.11) and let Rp,A be defined as pre-
o,
i# ceding (2.18). Since ¢(z) as defined by (3.16) is in LZ(Pp)

1 p(z) h(g)dg 1 p(z) h(g)dg

- - J Jp gy dz = - — lim | J dz
: r z= = - -

< 4u? Ty 7w I, (z-0)p(%) 4n’ pve Tpa ZW T, (270)(T)

.

2 1 h(g) p(z) p(z)

=~ lim | - / - R dz dg  (3.20)
4xl Ave T (9-2)p(3) Toa 129 z-g

-y because

T
: p(z)h(Z)
o (z=w)(z-2)p(3)

Ei 1s integrable for ¢ € Ty, z € Ty ). Then we note, since FO' 1s interior to
N o, that with pa(Z) = p(Z), | &)< A Py (%) = 0, | cf>a, and a>|w],
:_

~Q

\Q

~0

.|

e B et e NS,

" e s ¥ v . -
PO A A A AR A0
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1 p(z) _ p(2) . _
2xi jR z-w z-[ dz p(w) PA(C)u

p,A
Since h(Z)/(z-Z) is integrable on Iy

h(g)p,(g)dg
lim A ELSL

il wroso T e

Since it is easily established that

lim - p(z) _ p(Z)—J d
Ase URp.A JPD,A)[Z—" z-t i

we conclude that the last expression in (3.20) converges, as A tends to =

ao’

to the corresponding expression in (3.19), which is all we need.

Again for o (l Re(w)l { p we note that

¢$(w)-h(w) 1 | h(z)dg _ h(w)
p(w) 2vi °T (w=-2)p(%) p(w) °

But one shows quite readily that

he) L, _h(ede Ll h(g)dg
p(w) ~ 2¢1 T w-0)p(E) axi T (w0e()

since h(Z)/p(Z) 1is holomorphic in the region o <| Re(c)l < p. It follows

that

¢(w)-h(w) _ 1 | h(g)dzg
p(w) 2xi ‘T (g-w)p(%) °

Since the right hand side defines a function which 1s holomorphic for
|Re(w)| < p, the left hand side must be holomorphic there as well.
Finally, there is the bound (3.15). This follows immediately from (3.17)

and (3.18). For h(g)/p(g) 1lies in L2(rp), and, since

1 h(Z)dg
Ir

7nl opny - ¥

21
is the external part of this function, we see that ¢‘ rp £ Lz(rp) and may be

bounded in terms of | h| L2(r,)’ using the fact that p 1is bounded below on
o

.........
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I's for o > a. Then we note that ;, defined by (3.18), 1is the internal part
of py relative to @&, and, using the fact that p is bounded above on Tp,
we bound 141, =| ¢' p 1in terms of |¢|L2(rp), which in turn 1is bounded in

terms cf l h' L2(r0)' and that may be bounded in terms of | h' LZ(Pp)’ which

completes the proof.

Corollary 3.5. Let h e ﬁz(rp) and let ¢ be constructed as in (3.17). Then

¢/p € ¥, and for every 6 e ¢.

1 8(z)h(z)dz _ 1 _ 8(z)$(z)dz
2ni er p(z) 2ni jrp p(z) ° (3.22)

Proof. The conclusion ¢(z)/p(z) ¢ ¥p follows from Theorem 2.2 since ¢ € ¢.

For a < g {p we have

8(z) ¢(z)dz

L | h(z)
2ni Pp p(z)

1
w2z e ™) Ir e

d; dz

S h(g) 8(z) o1 B(z)8(r)de
=) ]ru ;i';_) ]rp?—L;""z ¢ = 721 fro 63

1 | 8(z)h(z)dz
2ni Fp p(2) ‘

The change of order of integration is established in much the same way as in the
preceding theorem. The last identity follows from the analyticity of 6h/p in

the region o <| Re(z)' { p together with by now familiar estimates on the

integrand as | Im(z)l + o,

Theorem 3.6. For any cardinal function p there is a positive number Kp

such that for all ¢ € Yp (and p > a, cf. (1.4))

W <Ry 1yt (3.23)

Hence 1 1, and I 1y are equivalent on VYp.

- LI P I - K - - - 0 . » n A
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-
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Proof. Let ¢ € Yp and let o > a. Then
2

1yt o = jF |¢(Z)|2 l dz| = E%T JF ¥w(z)h(z)dz
P p

where

2ny(z), =z e+Fp
2niy(z) | ¢z |
h(z) = 2miy(z) —3— = _
-2ny(z), z ¢ Ip .
Clearly h € Lz(Pp) and hence can be written

n(z) = h(z) + h(z), h e HE(Tp), h e HX(Tp).
We claim that

jr v(z)h(z)dz = O.
P

For 1f T > p we can easily show that

Jp W@h(2)dz = [ WEIR(E)dT = (c£.(3.9))
[o] T

= WO 5 J; dz dg
T p

- h(z) -1 W) 4. 4z =
]rp h(z) i er s dg dz 0

because z on T, 1is external to the region Re(Z) > ¢ in which ¥(g) 1is
analytic and l w(c)l + 0 uniformly as l ;' + o, The last property is any

easy counsequence of

- 1 PY(w)dw
v(z) 2%i jP L-w
p
valid for Re(%Z) > p. Thus, using Corollary 3.5 with ¢(f) expressed as

v(g) = 6(r)/p(), B8 €0,

and ¢ related to h as in Theorem 3.4 and Corollary 3.5

e e AT e e
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:' 2 1 ~ 1 8(z)h(z)dz _
E:Z'. AP =y jr‘p ¥(z)h(z)dz = 57 JI‘p p(z) -
- 1 w(z)$(z)dz
(c£.(3.22)) Tl frp o(2) = <{¢,y>
< Mty el SBAGL e, (3.24)

with B independent of ¢ since 1¢ly and 191, are equivalent. But

thi can be bounded in terms of i, (see (3.11)) and (cf. (3.15))

L2(Tp)

L] PN can be bounded in terms of Ihli Hence there is a positive

L2(Tp)’
number Kp» depending only on p, such that
191 < Kp ME .
Using this in (3.24) we have (3.23) and the proof is complete.
Thus we see that Yp, equipped with any of the norms ¥ ¥,, p > a, 1is
a representation of &', the dual space of &, duality relationship being
expressed by <¢,¥>, ¢ € &, ¢ € ?p.
) A representation of the dual space ¢' iIndependent of p may be obtained
in the following way. let ¢ € ¥. Let p be a cardinal function and let p > a
X (cf. (1.4)). Let
¥(z) = h(z)/p(z)
and we see, since p 1s bounded below on TI,, that he Lz(rp). Write

-

h =h+ i, he ﬁz(Pp), h e ﬁ2(rp), and we gee that for every 8 e ¢

1 0(z 1 egzzﬁgz!dz
O 9> = 71 JI‘p F(%)l h(z)dz = 743 11‘0 p(z)

1 $(z)
v + 7L }r 0(z) E(—z)— dz
xj p

with ¢ constructed from h as in (3.17). We know that q/p € Yp ¥. Define

equivalence classes in Y by
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(W} = {p e ¥ <o,¥> = <p,p> for all ¢ € o}.
Then

gk, = e, Ve {y}
defines a norm | ' ¢, on Y. Given a cardinal function p, each equi

class {y¢} contains exactly one representative ¢/p from ¥p and

t{ehr, = 1e/pt, ,
so the map
(v} » ¢/p e {¥}
is an isometry between Y and Y, relative to I1{y}ly and 1¢/ply.
Defining

&= {{y}|vetl,
e with the norm 1 1y 1is a representation of ¢'.

There are other subspaces of ¥, besides the space Wp which we 1
described, for which the result of Theorem 3.6 remains valid. Let a >
let

YA C:{zl| Re(z)l < a}
consist of a sequence of numbers:
Z = {zx | == <k < =}
with the property that
1Qf (Im(zy) - Im(zy_q)) =d > 1.

Let ¥, be the closed span in Y of the function

z

%(Z)-z_ik'-w<k<m.

We have, of course, for | Re(z)| > a,

z t
4 (2) = Ce (@), e(t) =e’ .
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Results due to Ingham [J] and Duffin and Schaeffer [F] show that for each

sequence {ci} 22 the series

@ Zkt

g(t) ;:Zm c e (3.25)
converges in LZ[-H,N], and there are positive numbers C, c, depeunding only

on a,d, such that

-2 2 T 2 2 2
e 7| g | 12[~n,x] < kz_w[ ckl <c|g 12[=n,x]" (3.26)
We know that 1yly 1s equivalent to HgILz[_" “]. Therefore for some other
’

numbers é, ¢, also positive, with

o ck.

¥z) =

k:—m z—zk

, (3.27)

this series 1s convergent in ¥ with respect to I lg and

~-2 2 3 2 22 2
O TR kz | ck| <ctpty . (3.28)

For each integer £, (3.25), (3.26) show that for ¢t € [-n,n]

o 2inz z t

k k
g, (t) = g(t+24m) ki_,<°ke ) e (3.29)
counverges in Lz[-w,n] and
23nz
-2 2 T k |2 2 2
c Igzl LZ[-n,n] < kz‘m’ e < ¢ Igll Lz[_ﬂ’"],

go that

~4wa -2 4na 2
e c e

2 <t 2 2
gt Lz[-ﬂ,ﬂ] < kz_m' ckl < € g, ! LZ[—n,w]'
From this we conclude that (3.29) defines a function g(t) on (-=,2) such

that for any p > a, g € Lo(==,»), H1.e.,

e Pty € 12[0,=),

et gt) e Li(-=,0],

Then, clearly, the series also converges to ¢ 1in ¥ with respect to 1 1

and there are positive numbers é, E, depending on p, such that

N T T T TR T AN L I T AT s T AT TR AT AT AT N e
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A A

!

\F -

&2 |¢|§ < k‘f 'ck| 2 ¢ ¢ I\bli (3.30)

a
s

j‘ A’
)

)
&

Then from comparison of (3.28) and (3.30) we have

LEARrOON

<!

Proposition 3.7. The subspace ¥, C ¥ congists precisely of series (3.27)
P z -

)
o

with ¢ € 12, the norms 1 1¢ and 1 I, are equivalent on ¥, 1s closed

PR RENES
[ " B A

z

* 's

Moreover, the map

with respect to the topologies derived from | Iy

Al S
[

Ir ~

T:{ck}E’oZ*VEV

X

-‘i_ defined by (3.27) is bounded and boundedly invertible (on ¥,) with respect to
.

v

'{ck}','Z and either [Iyly or Iq;lp, the bound depending only on d and

a.

This result will play an important role in the next section.
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4. "Regular” Nonharwonic Fourier Series in Lz[-ﬂ,w] .

We have defined in (2.7) the Laplace transform of a locally square
2
integrable function g 1in Lo(-=,=)(cf.(2.6)),
¥(z) = ( g)(z)-

Then with ¢(z) = (Ff)(z), f € Lz[-u,n], we have seen that

n
<o, 9> = ]" £(t)g(t)de. (4.1)
As a consequence Iyly 1is equivalent to Igle[_" “]. when ¢ 1s restricted
’
to lie in Yp, we know that 1ylg 1s equivalent to (Uyl,, which in turn is

equivalent to

[j“lg e2ptl 8t | 2 4¢ 4 1; e-ZDtl 5o | 2 4;1 1/2

z ' g l L‘z)(—eo’oo)

£_1 .
We see then that, for g € Yp» lgly is equivalent to dghop . .1

Proposition 4.1. If p is a cardinal function, S’l?p 1is dense in Lz[—x,n].

Proof. Since (2.33) 1is valid for each f € Lz[-w,n] we need only show that
<$,¢> = 0, for all ¢ e ¥, (4.2)
implies ¢ = 0. But for ¢ € ¥p
¥(z) = 8(z)/p(z), B8 e,

and then for p > a

-1 $2)8(2) . _ . b
. ¥ = 5oy Ip Tormy 92 7 <0 2 (4.3)

If (4.2) is true, Theorems 2.2, 2.3 show (4.3) equals zero for all 6 € ¢ and
then Theorem 2.5 shows that ¢(z)/p(z) = 0 which implies $(z) = 0 and we

have our result.
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We will see now that this proposition is really a statment about the
completeness of certain complex exponentials in the space LZ[—w,n].

Let the points in 2 the zero set of the cardinal function p, (Zp may

p’
be shown to be non-empty quite easily using familiar theorems (cf. [K]) about
entire functions) be indexed as z,, k € K, where K 1is a countable index

set, and let p be the multiplicity of 1z, as a zero of p. We denote by Ep

the set of generalized exponentials

z t z t -1zt
x k M7 %
{e ", te = ,eee,t e | z, € Zp} (4.4)
and by [Ep] be span of these functions in LZ[-n,n]. It will be recognized
immediately that
[Ep] = S-I(Rp)

where Rp 1s the subspace of Yp consisting of rational functions

p(z) = :E:;

where o(z), 1(z) are polynomials in 2z with deg o < deg v and p(z)p(z) € ¢
is entire. The completeness of E, in Lz[—u,n], i.e., the fact that
TE;T - Lz[—w,ﬂ]

i3 equivalent to the denseness of Rp in Yp by virtue of the remarks which we
have made above. Now Rp is complete in ?p just 1in case, for ¢ € ¢

<$,p> = 0, p ¢ Ry, =2> ¢ = 0. (4.6)
That 1s the case in just the argument already givenm in Theorem 2.5 with the
rational functions Yc 1in place of p: 1if (4.6) were true them ¢/p would

be entire and hence zero, 8o that ¢ = 0. Thus we have

Theorem 4.2. If p 1s a cardinal function then Rp 1is dense in ?p; equiva-

lently, (4.5) 1s true, i.e., E, 1s cowplete in LZ2[-n,x].
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This is, of course, not a new result (see, e.g. [E], [F], [K]) and is included
here simply to make our presentation self-contained.

The functions (4.4) comprising E, have the property of strong linear

independence in Lz[—w,w] just Iin case no such function lies in the closed span

of the other elements of Ep; in the context of ¢ and ?p this is equivalent
to the constructibility of the Lagrange functions 8k,v € ¢, k e K,
0 € v <, with the property

o, £ #k
ol @y {0tk 3y
1, L=k, J=v.

Since it is easy to see that these can be constructed in the form (the cy g

are complex scalars)

wv cV n
Qe (2) = p(2) [ ————
’ n=1 (z-z k)

we will regard this strong linear independence as established.

We see, therefore, that Ep forms a basis for Lz[—ﬂ,n] in the sense of
congtituting a complete, strongly independent set. A decidedly more ambitious
enterprise is to give conditions sufficient in order that Ep should be a

Schauder basis for Lz[-w,w], i.e., denoting the elements (4.4) of E, by

ek, vs keK, 0<v<y, that each g ¢ Lz[-w,w] should have a unique con-

vergent expansion

u=l
8" kgx v;-o Be,v %K,v (4.7)

the 8k, v being complex scalars. The uniqueness is already in hand, actually,

because it is easy to see that if it were violated for some g ¢ Lz[—n,u] the
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ex,v could not be strongly independent. Thus it is the existence of a con-
vergent series as shown in (4.7) which i3 the main question. It appears to us
that the most usable sufficient condition, stated in the context of our develop-

ment, is the following. We recall ([N]) that p 1s almost periodic in a strip

| Re(z)l < B just in case for each € » 0 there is a positive number £ =
2(c,8) such that in each interval [{,Z+L] of the real axis of length L > %
there is at least one number n such that

| pCz + 1n) - p(2) | <€ (4.8)
uniformly for all 2z such that | Re(z)| < B.

Theorem 4.3. If the cardinal functfon p, with related a as in (1.4), is

almost periodic in some strip l Re(z) l <B with B > a, then Ep is a

Schauder basis for LZ[—w,ﬂ].

Proof. Let a < p < B and let Cy be a simple path joining r, to Fp which

does not meet Zp. Then for some ¢ >0

I p(z)l >e., z¢g C0
Let 0 < € < €g/2 and let £(e,B) be selected as indicated above. Let
L >+ 48, where 6 1is a fixed non-negative number, and for each non-zero

integer k = 1, %2, e¢¢., let ng € ((k-1)L + &, kL] be such that (4.8) holds

with n replaced by nyg. Then let
¢, = {z+1in |zecy}, k=21, 22,000, (4.9)

and it is clear that for all such k
lotz)| >e, zeq . (4.10)

For each positive k let Tj  consist of the portion of T, between Cy.)

and C, and for each integer pair k,., k > £, let Pp’k’z be the portion of
r

p between C, and Cjy; thus rp,k = rp,k,k—l’ Define also
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Rok ™ To ¥ 6 ™ Gopr K= 12,3500,

R r c, -C

= +
psk)z p)k"" k L’
For z outside Rp i 2, which includes | Re(z)' > p, define

K, L = £1,%2 ees, k > 2.

Extended by analytic continuation to C - (2, NInt R,y g), ¥ g € Ry

Similarly define Wk,z € ¥, but not necessarily to Wp, by

~ 1 v(z)
¥ ,(z) = dg.
k,2 271 jRp,k,l -z

let p < o< B. 1t is an easy consequence of the properties of the n2 spaces
in a half plane (see e.g., [B]) or the Carleson meagsure theorem ([L], [M])

that

ln | v - $k,l‘ s = 0- (4.11)

k »oo

Since ¢(z) = ¢(z)/p(2), ¢ é*st the Riemann-Lebesgue lemma shows that

m  ( sup| ()| ) =, su =0
|k|"°’ CECk' I |k|p’° Ck
Since
. (c +c ) 2(C)
| W o) + (ARON R an%z,gp D

vhere 2(C) 1is the length of C and (I = distance)

d(z,T, \ ) = C;m | t-z |
Pk, 2
it 1is clear that
&fﬂ e, o W 2l =0
ko

and therefore, from (4.11)
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lim ¢y - =0 .

k+o
Lr—oo

wk,zlo
If we let
= £ =4
v g wk’z gk,l
then ¢k,z € Rp > gK,L € Ep. Since 'W‘Wk,z'q is equivalent to

'8‘8k,z|L2[_“’"] and since

T
8 o= g, » 8= J
k, 2 =241 h| 3 3
v = 1 ¥(o)

wj 2ni JP t~z dt e Rp )

we have

g = jz_w gj , gj € Ep .

convergent in L2[—w,w], and the proof is complete.

We will have more to say about the significance of the assumption about
the almost periodicity of p 1in the concluding remarks of Section 5.
Series in the functions e described by (4.7) have been referred to in

the literature as nonharmonic Fourier series. Much of the interest in such

series centers on the question of whether or not they form a Riesz basis for
L2(-%,%]. A sequence of elements, {xx}, in a Hilbert space X forms a Riesz

basis for X if it is a Schauder basis for X and, with

x= J ¢ (4.12)
keK “k Tk
the unique series representation of x 1in terms of this basis, there are posi-

tive numbers b,B, independent of x, such that

_zl x' < X ' ckl < B | xl (4.13)
kek
It is evident that {x} 1s a Riesz basis if and only 1if the map from

{ck} & &% to x € X defined by (4.12) 1is bounded and boundedly finvertible.
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A generalization of the Riesz basis notion is that of a uniform decom-

position of X. Suppose X, k € K, 1s a sequence of subspaces of X. If

4, 5, 4, 0 T

a s 2 2

every x € X can be written uniquely as an X-convergent series

"': X = g gex (4'14)
s k= Tk

,: and, with b,B positive and independent of x

-~

]

-2 2 2 2 2

N b x < £ < B | x ,

: 212 < ] 5] 2 < s?]x]

A then we will say that the X, form a uniform decomposition of X. A special
:j case occurs when {x} 1is a Riesz basis for X and X, = [x¢] so that for
:; each k

A T %

j: for some complex scalars ck, k € K.

$- It is well known that if {x}C X 18 a strongly independent Schauder
{ basis for X, and if E 1s a representation of X' relative to the bilinear
F ot
2 form <x,E>, then there are unique £; € E such that

"'n

',

) 1, k=2
"% <xk’§l > = k, 2 € K.

0, k# 28

o
o When ({x,} 1s a Riesz basis for X, {§ } 18 a Riesz basis for E. The com-
3: parable notions for a uniform decomposition are as follows. For each k we
~

N have

: X=X @ X
% 5@ X

k where Xp 1s the closed span of the Xy, £ # k. Thus there 1s a unique decom-
o position

- . . 2

2 TER PR e R, ek

-,
e, Let

- - L n -wl
22" 12 .
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ka =X -
Then Py 18 a bounded projection with range X, and I-Pi 1s a bounded pro-
jection with ramge Xy . We «efine Z; to be the range of the dual projection

Pp on = and we define E; to be the range of I-P 1in E. Clearly for

x € Xy, & € E¢ we have

2
<x,&> = <ka,(I—P&)£> = <(Pk~Pk)x,£> = <0,&> = 0.
and we have a similar relation for x ¢ Xk, & € Eg e
If for every x € X we are assured of the existence of a unique, con-
vergent representation (4.14), whether (4.15) holds or not, we will say that the

X form a Schauder decomposition of X.

Let us now place Theorem 4.3 in the context which we have just developed.

For each integer k we define a linear operator, Py, on ?p, by
_ 1 p(2)de
(Pk‘P)(z) 2."1 jR Z‘C ] z € EXt(Rp,k)'
p,k

Setting

¥ (2) = (B ¥)(z), k= 0,21,22,.0

‘ = Y = + * cese -

p.k Pk p k = 0,1, +2, (4.17)

'p,k consists of rational functions p(z) = o(z)/1(z), where o(z) and 1t(z)
are polynomfals with deg o < deg t. Moreover, p(z)(o(z)/t(z)) 1is entire.

The dual operators defined on ¢ will be called PL. Their definition is

= (P! - 1 $(g)dg
4 (2) = (B $)(z) = p(2) 51 [p E0p(D)
fs (4.18)
z € Ext(Ré,k). k = 0,%1,%2, 0.

and we define
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Q = ' = + t."' -

b,k Pk0, k 0,%*1,%2 (4.19)
The proof that ¢, as defined here, has an entire analytic continuation lying
in ¢, so that °p,k is a subspace of ¢, follows much the same lines as
Theorem 2.3

It is easy to see that the operators Py, PL do not depend on the par-

ticular choice of p > a.

Proposition 4.4. The operators Py, PL are projections on Wp, ®, respec-

tively, and for

Ve ¥ $ ¢

P, K’ L # k,

z)

we have <$,¥> = 0. Moreover, P, 1is the dual operator to Py in the sense

that for ¢ € ¢, P e ¥,

(P&¢,¢> = <{¢,Pyi>.
The proofs are easy and essentially the same as those given in connection

with the operator calculus in [N] and are omitted.

Theorem 4.5. Under the hvpotheses of Theorem 4.3, taking 6, described prece-

ding (4.9), so that &6 > 1, the spaces Yp,k described by (4.16), (4.17)

form a uniform decomposition of the Hilbert space ¥,.

Proof. We need a standard parametrization of the paths Rp ke Let the points

+
where C, meets Pp and Fp, respectively, be o k» Tp ke We construct a

map

L = ck(c)

from Rp'o onto Rp,k as follows:
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c+ink, CECO

z Q) =
c+t(n_, —-n ) el

+ -
The vertical sides of Rp i are Tp g, Tp . We define

r+ - r+
+ + p,k p,k-1 +
+ - ] 2
rp’k—l (c rp)'l)( + + ), ¢ E rp>0
-r
p,0 p,-1
= g () = ] ]
SN - - rp k rp k-1 -
L r + (g-r 2 J T
508 p,k-1 (z p,-l)( - op ), te 0,0
:‘\.”: p,0 "p,-1
}f}: The construction of the paths Cp 1is such that the lengths of Fp’k, Pp,k’
’:?if i.e., | ok ™ rp,k—l‘ and | ok ~ rp,k—l' , always lie in the interval
iiiﬁ [6,2L-6]. It thus follows that | Ck(C)| i{s bounded and bounded away from zero,
Y
S uniformly with respect to k and ¢ € Co. Write
{ '
d <| ;k(g)| < D. (4.20)
;i;i Let ¢ be an element of Yp. Then
S
A
SN - 1 P(w)dw
) W (@) = (P ¥(2) =5~ [0 S-— (4.21)
- p,k
et z € Ext(R .
A ( p,k)
SAF A
NI Setting
Tl
w o= £ (2), dw=g (%) dg
itjf we can re-express (4.20) as (suppressing the argument ()
i ,
RO 1 v(g g, de
.:.' ’ wk(z) = -2-—"—5: jR —T:—C-—-—— s, Z E EXt(Rp’k)- (4.22)
[ 0,0 k
'}}f? For o> p we will estimate
i kz_m g 1, = k__{__w jg | v ()| dz.
e
.f_: Let us note that for fixed ¢ ¢ Rp 0> k(%) &yr—1(Z) have the same real part
L ’
foet
,:*:; and
<
X,
Y
o
Q‘f‘
-.‘l
£
S
..; 4 .
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Iu(g (2) = g (8) > &> 1.

Then we estimate

v o (g, )]
2 1 K’k 2
B R R T P e N
2 = ¥(z,)
D 2
e G R P TR PO L
2
D" (R ,o) o w(Ck) 9
4wl kgim JRD’O jro' 'E?‘; | dz| 4] ¢
D’ (» ,0)2 = vz,
Y ;eaipo {kl_, Ir | ‘;:z;| | 4z | }
2 2
D 2R _ ) .
¢ a2 e sz )| 2, (4.24)
Z‘N ( inf Ip(z)| im (q_a)2+r2 CEEL;?O {k-_Z-J k | :
R0,k

where

v(z) = ¢(2)/p(z), ¢ ¢ ¢ .

Clearly our task is to estimate the sum in (4.24). Let

- WTY
k—_Z-on Ck—w

From (4.23) and the inequalities (3.28) there are positive numbers ¢,C such

Y(w) =

that

~2 ,~ 2 T 2~
c © oy <k=gm Jocg )] ° <€

Then it is easy to see that

[ 2 _ 1 ~
k;_m‘ o) | © =5 /ro $(w)  P(w)dw
L . .c ¥ 2 41/2
Sy Mt er o < 5%- I3 (klﬁm‘ oz )] ")

\’\_.3,»
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and we conclude that

A TP (4.25)

the constant c¢ depending only on & > 1, and not on the particular sequence

Zx- Then from (4.24), (4.25) we have,

Lowrom L rlweo | ?l el

k-
2 2~2 sup
Nl Y e LN
g’ o (oma)der? zttli‘f,’kh(z”
- 2
z cf w2 . (4.26)

To obtain an inequality in the other direction we note that
- iy o | Plae =g |1 we|?] e

.Z. 1 ”cic%clﬂd'

= Jro K- 271 I“,,o =T
- - W(T V(T PEITHE dT
ety 10§ g gy —EEEL  a
4 O km—® f=-= "p 0 "p,0 (z-Ck)zz-C,_s
e = ®EIVETIOTY| dz| —
ey g e g ) A D] & n
4%° %p,0 Tp,0 g ki~ R-e (z-ck)Zz—c,}
v, ()%, (AR
1 k k [ ol
m%m&m“‘ﬁ-wn’” == )| dz | dc &
‘D l(R )2 ( - tk(?.'k) 2 )
s cel'tup L. =% s )-
Siance
1 P(2)¥, ()

dz

n (&) = p(c) wi Ir, TR
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we have
s ,:gzl p(z) |
‘ ——-————-
Il T L oa? G o )
and then
up | p(2) |
e 2, 1 = _dr el 2
el % B ot PR ( 1nf[p(z)] )kZ W'l -
p.k

But we know from (3.28) that

» *k(k)z 2 @ 2
.kz.. =L, g < ¢C kz—-' *k(ck)|

with ¢ depending only on § > 1, and hence

2 2
D L(R_ ) o ¥(3)
2 p,0 o) 2
e T2 (; i:‘: ="l M
2 2 ~2
DR )" ¢
< —20 (%) | 2
Dzz(np )2 32 - 4 | ( rpl (!)l ) f
< 20 TR
axt . la oy tar? inf—k[ p(z) | ko
2 v 2 Ps
- L.iwnls . (4.28)

which completes the proof.
We now address ourselves to the question as to when the individual func-
tions (4.4) form a Riesz basis for L2[~w,¥]. The next theorem treats the case

wherein the cardinal function p 1is almost periodic and the zeros, zx, of »p

are simple.
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;«*1 Theorem 4.6. Let the cardinal function p satisfy the hypotheses of Theorem
’:’g 4.3 and let the zeros, 2y, keK, of p be simple. Suppose there are positive
i numbers r,R such that
r <| p'(zk)| <R, k€K (4.29)
s Then the functions

& .

» W@ == (4.30)
4 k
} form a Riesz basis for Y¥,.

1;-: i

g2

1’ Remark. The right hand inequality in (4.29) follows, of course, from the boun-
‘ 3 dedness of p 1in strips | Re(z) | < p.

?*‘-m Proof of Theorem 4.6. From Theorem 4.3 the functions e°X* form a Schauder
5 basis for L2[-w,¥]; equivalently, the functions (4.30) form a Schauder basis
?1 for ’p-

3t

o Now consider sequences of coefficients {ak| k € K} € 2g, and define the
é operator T : iy + ¥, by
3 .

;.A_ T { }) - S Z)oe 4-31)
B U = B -z, P ARY ¢

g The domain of T consists of all {a;} for which the right hand side is con-
r vergent in 'p' Thus T 1s densely defined (look at finite sequences), one to
9 one (by strong independence), and has dense range (by completeness). The
- adjoint map 1is

*
T :éco+ {Q(zk)'k € K}. (4.32)

_ Since

-‘,'.1'].. (AT R AT ‘. N .~ TNt o e,
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: - p(z)

z 4 (=) p'(z,)(z-2)

i is the unique element of ¢ biorthogonal to y, 1i.e.

) 1, k=1,

) ¥y = S '{

; 0, k#12,

g and ¢x(zg) = 8¢y, it 1s easy to see that T* 1s defined on sums | byréy(z)
and hence has dense range. That it is one to one follows from the proof of
Theorea 2.5.

Now, in fact, T and T™ are both bounded. The boundedness of T*

y follows from the fact that, for ¢ € #, e ¥Z§(z) 1lies in the Hardy space

‘ nz{Re(z) > p} and the fact that the zeros 2z; of an entire function ¢ € ¢
have a maximum density; givem L > O, there i an M > 0 such that the number

. of zeros 2z 1n any rectangle ' In(z—a)' < £, ' Re(z)' < p does not exceed ML

f when £ > L. The Borel measure on Re(z) > —=p defined by

§ u(lk) =1, z, € zp .

u({Re(z) > -p} - 2.) = 0,

N is then a Carleson measure ([L], [M]) and there is a B > 0 such that for

? éc

X kz_J oz | 2 <3 agl : .

j i.e., ™ has range entirely included in t% and is a bounded linear trans-
- formation. But then T = (T*)* is a bounded linear transformation.
To show the Riesz basis property it is only necessary to establigh that

Tl  1s bounded. We have seen from the boundedness of T that if {a} ¢ i;

then

"""""" ORISR, |
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i 2% a
BN k
2 v(z) = — B
S:si% kgx % P
gi”f%’ and we have
o 2
[ #lo <lTl g dad®
“ Now let {by} € %. Then
&
R ™ -1 - - E‘!)ﬁ
e (T) {bk} kgl( bk‘k(z) kZK bk P (zk)(z-zk) ’
g; the domain of ('r*)'l being those {by} € !.i for which the series on the right
5%
f': converges. But (cf. (2.20) for definition of P)
P d p(z) = p(z) X (= Py )
5 kgx Pk p' (2 ) (z-2,) k€K P (z ) z-zk
i‘*ﬁi =P ( % ) =L ) = pr{ " }.
i Gk vy ) 7 P(z)
i Since the numbers p'(zyx) are bounded away from zero, the map
[5x - [k
=5 clby} {p'(zk) }

is bounded on fg- Thus

a7y} = iy b“ ! - ey,

10..,

* -1
(T ) = PTC .
Since P,T and C are all bounded, we conclude that (T*)—l, and hence

- '1'—1, is bounded. Hence {(z-zk)'l} is the image of the standard orthonormal
\:‘s basis for 22 under the bounded and boundedly invertible linear trausfor-
. matfon T and we conclude that {(z-zj) '} is a Riesz basis for Yp.
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N Corollary 4.7. DUnder the hypotheses of Theorem 4.6 the exponentials

24 h

? {e'ktl k € K} form a Riesz basis for L2[~%,¥).

A

) This 1s an immediate consequence of the fact that for g e Lo(-=,») such

that (g) = ¥ € ¥y, the norms Igl and Iyl,, or 1Iyply, are

L2[-I,I]
-1 Zyt
equivalent, together with (z-z2) = (e"%).
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}%kﬁ 5. Concluding Remarks.

)

gé?% If we agree to refer to the Schauder bases of exponentials {ezkt} for
2} ‘

it Lz[-t,tl associated with the zeros of a regular cardinal function p, as
5i§ﬁ defined in Section 1, as generating regular nonharmonic Fourier series, we
"J:'FS\

obtain a class of such series which overlaps, but is neither included in, nor
includes, the class of such series studied in the familiar literature on the
subject. In the classical literature, which includes, e.g. {C], [D], [E],
(F1, [(F}], (J], [0], and numerous other contributions, the emphasis lies on
properties of the sequence {zy}; properties such as density, asymptotic gap,

proximity to the imaginary integers ik, etc., are the starting point. What

we call the cardinal function, p, is constructed as an infinite product

p(2) -ll; (- i ),

ordinarily with grouping of terms to ensure convergence. The properties of p

are then deduced from the properties of the sequence {z}.
The most frequently studied sequences {z;} (see, e.g. [E], [0]) are

those imaginary sequences for which (letting K = the integers now)

1
. IR, RESCIER XS (5.1)
'igﬂ’ Not all of these nonharmonic Fourier series are encompassed in our framework.
v'v‘“i:‘!'!
ﬁ?{“ The property of prime importance for p, referring to our framework now, is
u“ ,
PG that p 1itself should not lie in Lz(Pp) but, for each zero zy of p,

(z)

) = ey

e *k p'(z )(z-2z,

should 1lie in that space. This requirement, by itself, does not make p

o~ bounded and bounded below on I, as in our work here. Roughly speaking, it
El
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admits functions p(z) whose growth on T, is like | z| ¥ with -2 < u < V2.

Such growth 18 obtained for sequences (5.1), e.g., if

zk~1k(1--2—,u—ET-), lk'-vo.

Consequently, such cases are not covered by our theory as presented in this
paper; we hope to be able to modify our methods to cover them.

To give an idea of what our theory does encompass, we first need a
reasonably large class of cardinal functions which meet our conditions. Such a
class may be constructed as follows. Consider the distribution, d, with sup-

port in [-w,x], defined by

d =8+ 8y +k21 N 6(5\3 + £, (5.2)

where §(g) 18 the Dirac distribution with support §, co # 0,
I
e, | =,
k=1 k|
the points £y are distinct points in (~n,n), and f ¢ Ll[-I,!]- Using

results from [N] it may be shown that the Fourier transform of this distribu-

tion
p(z) = <d,e®>, (5.3)

1s almost periodic im any strip ' Re(z)| <p, p >0, 1in the complex plane. It
i1s also easy to see that the conditions (1.3), (1.4) are wet for some a > O.
Thus p(z) as defined by (5.3) 1s a (regular) cardinal function as defined in
this paper.

A very interesting case, not covered in the classical treatments [C], (D],
and [E], but presented as an unproved theorem in {F], occurs when the series

in (5.2) 1is finite, say of length N-1, and
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g = - +%zu , ko= 1,2,e00 N1, (5.4)

In this case
Nel &2

"z -nz T 2zt
z) = e + c.e + c, e + e f(t)dt
p(z) o kzl X i' (t)

po(z) + I e £(t)ae. (5.5)
The zeros of po(z) then take the form zyg = log(cj) + 2x2i, J = 1,2,°+¢,N,
- { L £ o yhere the ¢y are the zeros of the polynomial

cN + cu_lcu-l + oo clc + co
and the principal value of the logarithm is intended. The zeros, Zy8» of

p(z) are easily shown to be asymptotic to the zyy as | ’jl‘ + », Theorem 4.6
applies here 1if the z4q are all simple zeros.

An important case also arises for p(z) having the form (5.5) but with the
gy not rationally related to w, so that, in particular, (5.4) does not
obtain. In this case we cannot give a simple asymptotic expression for the
zeros of p(z) and they may cluster in various complicated ways as I zl +> o,
Nevertheless, p(z) remains almost periodic in strips l Rc(z)' <p, P20,
and Theorem 4.5 applies to show that Lz[—t,t] admits a uniform decomposition
in terms of finite dimensional subspaces spanned by generalized exponentials
associated with the zeros of p. This result has a number of uses in connection
with the theory of linear symmetric hyperbolic systems of partial differential
equations having wave speeds which are not rationally related (see, e.g. [P]).

It is clear, vhen p(z) has the form (5.3), that the associated genera-

1ized exponentials are the exponential solutions of the acalar neutral

functional equation
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w(t+n) + cow(t—t) +£z; ckw(t+5‘) + l: f(8)w(t+s)ds = 0. (5.6)
As such, these generalized exponentials, restricted to ([~w,r], are the genera-
1ized eigenfunctions of the operator
(Aw)(x) = w'(x) (5.7)
with (A) consisting of those functions w in the Sobolev space Hl[-w,n]

which satisfy the boundary condition
)

k=1

It is well known that when cg # 0, which we assume, the operator (5.7) genera-

w(x) + cov(-r) cky(Ek) + l:f(s)w(s)ds = 0. (5.8)
tes a strongly continuous group of bounded operators on Lz[-t,w]. This group
has been studied in ([Q], where it has also been shown that there is a very
strong counection between any exponential Riesz basis for Lz[-w,w] and a
corresponding group of restricted shifts, or translations. This is another
topic which we hope to return to at anmother time.

In this connection it is, of course clear that our methods are quite simi-
lar to the methods used for studying the spectral properties of differential
operators vhich involve various contour integration methods applied to the
resolvent operator (z1~-A)"1 (see [R], e.g.). The meromorphic function
1/p(z) plays much the same role as the resolvent does i{n that theory. In fact
it 1s shown in [Q] that for p(z) having the form (5.3), and A the operator
(5.7) with domain characterized by the boundary condition (5.8), that for
v= (v) e ¥, we have

¥(z) = ((z1-8) "'w)(0).
If one forms the distributional solution w(t) of
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LY w(t+n) + cow(t-w) +k21 cky(t+5k) + l“ f(s)w(t+s)ds = 6(0)

N it may be seen that 1/p(z) 1s the Laplace transform of w. This leads to the

formula.

1 -1
4 Stay = (I = 0780,

Z\j p(z)

xE if (zI-A)"1l 1is appropriately extended to H‘l[-w,w], which includes the

distribution 6(0).
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